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[1] Precise point positioning (PPP) has become popular for Global Positioning System
(GPS) geodetic network analysis because for n stations, PPP has O(n) processing time, yet
solutions closely approximate those of O(n3) full network analysis. Subsequent carrier
phase ambiguity resolution (AR) further improves PPP precision and accuracy; however,
full-network bootstrapping AR algorithms are O(n4), limiting single network solutions to n
< 100. In this contribution, fixed point theorems of AR are derived and then used to
develop ‘‘Ambizap,’’ an O(n) algorithm designed to give results that closely approximate
full network AR. Ambizap has been tested to n � 2800 and proves to be O(n) in this
range, adding only �50% to PPP processing time. Tests show that a 98-station network is
resolved on a 3-GHz CPU in 7 min, versus 22 h using O(n4) AR methods. Ambizap
features a novel network adjustment filter, producing solutions that precisely match O(n4)
full network analysis. The resulting coordinates agree to �1 mm with current AR
methods, much smaller than the �3-mm RMS precision of PPP alone. A 2000-station
global network can be ambiguity resolved in �2.5 h. Together with PPP, Ambizap enables
rapid, multiple reanalysis of large networks (e.g., �1000-station EarthScope Plate
Boundary Observatory) and facilitates the addition of extra stations to an existing network
solution without need to reprocess all data. To meet future needs, PPP plus Ambizap is
designed to handle �10,000 stations per day on a 3-GHz dual-CPU desktop PC.

Citation: Blewitt, G. (2008), Fixed point theorems of GPS carrier phase ambiguity resolution and their application to massive

network processing: Ambizap, J. Geophys. Res., 113, B12410, doi:10.1029/2008JB005736.

1. Introduction

[2] Since 1994, when the International GNSS Service
(IGS) became operational [Beutler et al., 1994; Dow et al.,
2005], the analysis of the global GPS network (GGN) by
several IGS analysis centers has consistently delivered high-
accuracy satellite orbit positions and satellite clock biases.
These, in turn, have allowed investigators to compute
accurate ground station positions for both regional- and
global-scale networks [Moore, 2007]. Use of these products
have enabled scientific discoveries and monitoring capabil-
ities, with scientific contributions to plate tectonics, the
earthquake cycle, glacial isostatic adjustment, crustal and
mantle rheology, and surface mass redistribution [e.g.,
Blewitt, 2007].
[3] As of 2008, data from �2800 continuously operating

GPS stations around the world including 400 IGS stations
are routinely downloaded from IGS and regional data
centers for subsequent analysis at University of Nevada,
Reno (UNR) (Figure 1). As full network least squares
computations scale as O(n3), this poses a significant barrier
to the full exploitation of all available data. Since its

invention by Zumberge et al. [1997], PPP has become
popular for regional GPS network processing, because
processing time scales linearly with the number of sta-
tions, O(n), and PPP closely reproduces an O(n3) full
network solution (in fact, it exactly reproduces the
solution for the subset of stations used initially for orbit
and clock determination).
[4] In GPS positioning, resolution of the integer cycle

ambiguity in the carrier phase data can significantly im-
prove positioning precision and accuracy, particularly in the
east component for equatorial to midlatitude stations
[Blewitt, 1989]. Theoretical properties of ambiguity resolu-
tion are here exploited to derive a very rapid algorithm,
which is then applied to GPS network solutions that have
first been derived by precise point positioning (PPP).
However, the processing time for full network ambiguity
resolution generally scales as O(n4), thus the main practical
advantage of PPP can be lost.
[5] Motivating this study was the idea that theoretical

properties of ambiguity resolution might point the way to
O(n) processing schemes. A reasonable condition for such
schemes to be acceptable is that the differences between
optimal and suboptimal solutions should be statistically
insignificant (‘‘near optimal’’). Here a new algorithm is
developed to apply ambiguity resolution to a GPS network
with O(n) computation time, which has been demonstrated
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up to n � 3000 at a rate of �5 s per station on a 3-GHz
processor.

2. Theoretical Considerations

2.1. Overview

[6] As a general strategy let us seek to partition an n-
station network solution into a number O(n) of self-
contained computational blocks giving results that can be
assembled as O(n). Our practical definition of O(n) can be
relaxed to allow for higher-order effects common for minor
necessary tasks, such as O(n log n) sorting, provided they
add a negligible percentage of processing time for n < 104.
As a general guide to developing an accurate algorithm, it is
important to consider theoretical properties of GPS net-
works subject to full network ambiguity resolution. This
section briefly discusses theoretical considerations only, so
as to clearly separate it from the specific implementation.
Although theoretical considerations generally require some
level of necessary rigor, the real proof of their validity in
this context will be empirical, with demonstrated accuracy
and computation times.
[7] In mathematics, a ‘‘fixed point theorem’’ is a state-

ment that, under certain conditions, operator F(x) will have
at least one fixed point satisfying F(x) = x. A fixed point
theorem might also specify what the fixed points are or how
to find them [Shashkin, 1991]. In the context of this paper, F
represents the ‘‘bias-fixing operator,’’ which uses ambiguity
resolution to adjust double difference biases to perfect
values (with zero variance), and thus update other correlated
parameters. Here we seek a fixed point for the mapping of
parameters from their initial PPP estimates to their bias-
fixed estimates.
[8] Since parameter sets can always be transformed into

another equivalent set (that is complete and linearly inde-
pendent), let us consider linear transformations ~s = Ls that
satisfy F(~s) = ~s, for arbitrary values of parameters s. As
shown in section 2.2, there exists such a fixed point which
can be interpreted as the weighted mean centroid of the
network. Moreover, it is shown that under conditions

common for permanent GPS networks, baselines that have
already been bias fixed are insensitive to the bias fixing of
other baselines in the network. Taken together, these fixed
points suggest a strategy of constructing a network solution
out of n � 1 bias-fixed baseline vectors (relative coordinates
between station pairs), where the initial PPP solutions
provide an absolute position to the network.
[9] This section also explores the stochastic nature of

large bias-fixed networks, considering that an O(n) algo-
rithm must abandon the computation of the full network
covariance matrix. As will be shown, it is remarkable that a
block diagonal representation of the covariance matrix is
almost exact for large networks. Finally, the selection an
optimal set of n � 1 baselines is addressed by considering
the theory of Euclidean minimum spanning trees, with the
goal of selecting an algorithm that contributes a negligible
fraction of the overall processing time.

2.2. Fixed Point Theorem 1: Centroid

[10] For an n-station network, let us start with n indepen-
dent station solutions from PPP, which can be written as
vectors si with covariance matrices Ci for stations i 2
{1,. . .,n}. Let vectors si include station coordinates and
single-difference carrier phase biases between all satellites
in common view. The dimensions of all si and the order of
parameters in si are assumed to be identical for all stations.
(The consequences of noncommon visibility will be
addressed in paragraph 16.)
[11] Let us define the bias fixing operator F(Ls) as the

mapping of any linear combination of parameters from their
initial PPP solution to a bias-fixed solution, as a result of
ambiguity resolution of differences in the single-difference
biases. Now the first fixed point theorem is stated:

Theorem 1 �s � �C
X
i

C�1
i si ) F �sð Þ ¼ �s ð1Þ

where �C � [
P

i Ci
�1]�1 = Var(�s). By definition, the

covariance matrices Ci = Var(si) are understood to be
constant, referring to the values given by PPP (but the
values of si in equation (1) can be from either before or after
bias fixing). Simply put, the weighted mean parameter
vector (‘‘centroid’’) is a fixed point with respect to bias
fixing.
[12] It is sufficient to prove that the centroid is not

correlated with differences in station parameters, by invok-
ing the block diagonal nature of the formal covariance
matrix from PPP:

Cov �s; si � sj
� �

¼ �C
X
k

C�1
k Cov sk ; sið Þ � Cov sk ; sj

� �� �

¼ �C
X
k

C�1
k dkiCi � C�1

k dkjCj

� �

¼ �C C�1
i Ci � C�1

j Cj

h i
¼ 0 ð2Þ

hence proving theorem 1.
[13] Now let us assume the lemma that correlations

between two variables will remain zero if a new measure-
ment is a function of only one of the two variables. Since

Figure 1. Number of continuous GPS stations per day
routinely analyzed at UNR versus date. The upper red curve
represents all stations, and the lower green curve the subset
that are official IGS stations.
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ambiguity resolution represents only a measurement of
parameter differences, this leads to the corollary:

Cov �s; s0i � s0j

	 

¼ 0 ð3Þ

where the primes indicate solutions after ambiguity
resolution.
[14] Another corollary of the theorem is that the vari-

ance of the centroid �C = Var(�s) is not changed by F.
Therefore, to compute the absolute location of a bias fixed
network, all that is required is already available in the
form of n statistically independent PPP solutions and O(n)
computations.
[15] One problem in applying equation (1) is that the

station coordinate components of the fixed point vector are
linear combinations of all parameters, including station
coordinates and bias parameters. It would be much more
convenient if a weighted average of station coordinate
triplets alone provided a fixed point. It is now shown that
this condition is satisfied when the PPP covariance matrices
for all stations are the same to within any positive scale
factor. For this ‘‘assumption of similar covariances,’’ let us
write

C�1
i ¼ wi

�C�1 ð4Þ

where the scalar weights satisfy
P

i wi = 1. In this case,
equation (1) reduces to

�s �
X

i
wisi ð5Þ

As the order of parameters are the same in all vectors si and
�s, the computations of weighted average of individual
parameters are decoupled in equation (5). Therefore, under
the assumption of similar covariances, the weighted mean
station coordinates can be computed without reference to
the bias parameters.

[16] The assumption of similar covariances requires that
observation schedules for bias-fixed baselines are similar
(but the data rates do not need to be the same), and that
there is reasonable common visibility of satellites. In
practice it is recommended that algorithms derived from
this theory only be applied to sites with data sets of equal
duration, for example, continuously operating sites with
full (or nearly full) 24-h data sets. It is also recommended
that algorithms be designed to select nearest neighbor
stations to conduct ambiguity resolution, both to maximize
common visibility, and to maximize probability of success
in ambiguity resolution.
[17] Since the absolute position of a bias fixed network

can be computed as O(n), what remains is the computation
of the relative positions of stations in the network, which
theoretically is completely specified by n � 1 baseline
vectors. This suggests that O(n) computation of the network
may be possible given the computation of n � 1 suitable
bias-fixed baseline vectors. ‘‘Suitable’’ baseline vectors
would need to replicate, or very closely approximate, the
relative coordinates derived by full network ambiguity
resolution. Furthermore, assuming such suitable baseline
vectors can be computed, theorem 1 implies that to compute
�s, as defined by equation (1), we can choose to use either the
original PPP solutions si or the solutions s0 = F(s) derived
from the suitable baseline vectors, together with the original
PPP covariance matrices.

2.3. Fixed Point Theorem 2: Baselines

[18] Consider a network solution initialized by PPP,
where a single baseline is then bias fixed to produce
parameter vectors si

0 and sj
0 , which include both station

coordinates and biases. As explained previously, let us make
the assumption of similar covariances. Let the bias fixing
operator F (defined in section 2.1) then be applied to the
entire network.

Theorem 2 ŝ0ij � s0i � s0j ) F ŝ0ij

	 

¼ ŝ0ij ð6Þ

Simply put, the bias-fixed solution of baseline parameters is
independent of bias fixing of other baselines in the network.
[19] To prove this, consider bias fixing stations i and j to

an independent PPP solution sk for any k 62 {i, j}, as shown
in Figure 2. From equation (3),

Cov sk � �sij; s
0
i � s0j

	 

¼ 0 ð7Þ

where �sij is the centroid of stations i and j, defined by
equation (1). Thus, adding any independent information on
(sk � �sij) (alone) has no effect on ŝij

0 . Expanding the term
(sk � �sij) results in the weighted average of two baseline
parameter vectors from station k:

sk � �sij ¼ sk � �C
X
p2 i;jf g

C�1
p sp

¼ �CC�1
i sk � s0i
� �

þ �CC�1
j sk � s0j

	 

ð8Þ

Figure 2. Diagram illustrating the geometry used in the
proof of theorem 2, showing the bias fixing of a third station
sk to an existing bias fixed baseline (si

0 � sj
0 ), by resolving

ambiguities to the centroid of that baseline �sij.
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Now applying equation (4) (the assumption of similar
covariances), equation (8) becomes

sk � �sij ¼ wi sk � s0i
� �

þ wj sk � s0j

	 

ð9Þ

where wi + wj = 1 and �sij = wisi + wjsj. As was the case for
section 2.2, the assumption of similar covariances decouples
the linear combinations of biases from the station
coordinates, so making it possible to resolve ambiguities
and bias fix equation (9). There are only two linearly
independent baselines in a three-station subnetwork, and
one of those baselines (si

0 � sj
0 ) is already bias fixed; thus

the other two baselines can be constructed as linear
combinations of (si

0 � sj
0 ) and (sk � �sij):

sk � s0i
� �

¼ sk � �sij
� �

þ wj s0j � s0i

	 

sk � s0j

	 

¼ sk � �sij

� �
þ wi s0i � s0j

	 
 ð10Þ

Therefore additional bias fixing of (sk
0 � �sij

0 ) is equivalent to
bias fixing the entire three-station subnetwork (Figure 2).
This fact, together with equation (7) demonstrates that the
first bias fixed baseline vector is insensitive to additional
bias fixing in the network.
[20] Note that equation (9) was only constructed to prove

the theorem, so we do not literally need to bias fix this linear
combination of baselines. According to the theorem, base-
lines can be individually bias fixed, then combined together
to approximate closely the full network solution, provided
the conditions of common visibility outlined in section 2.2
are closely met.

2.4. Stochastic Properties of Large Bias-Fixed
Networks

[21] Consider the cross covariance between station posi-
tions of different stations. To get an idea of how this cross
covariance changes a function of the number of bias-fixed
stations n, let us assume that all station covariance matrices
from PPP are identical Ci � C, which allow us to write the
inverse variance of the centroid as a function of n:

�C�1 nð Þ ¼ nC�1 ð11Þ

Now let us assume that, after bias fixing, all cross
covariances are equal, and all variances are equal, and
assume they are functions of n:

X nð Þ � Cov x0i; x
0
j6¼i

	 

V nð Þ � Var x0i

� �
¼ Cov x0i; x

0
i

� � ð12Þ

which uses the previous result that the variance matrix of
the centroid remains constant under bias fixing. As a
corollary of theorem 2, the variance B of the relative
position for a baseline that is already bias fixed remains
constant as the network grows:

B � var x0i � x0j6¼i

	 

¼ 2 V nð Þ � X nð Þ½ � ð13Þ

The following lemma will now be used, which can be
verified by taking the mean of both sides (which is allowed

because the left hand side must be identical for all stations)
and by applying �x0 = �x (from theorem 1):

Cov x0i; �x
� �

¼ Var �xð Þ ¼ �C ð14Þ

Expanding both sides by substituting equations (11) and
(12) gives us

�C ¼ 1=nð ÞC
¼ Cov x0i; �x

� �
¼ 1=nð Þ

X
j

Cov x0i; x
0
j

	 


¼ 1=nð Þ V nð Þ þ n� 1ð ÞX nð Þ½ � ð15Þ

Substituting equation (13) and rearranging gives

X nð Þ ¼ 1

n
C� B=2ð Þ

lim
n!1

X nð Þ ¼ 0
ð16Þ

V nð Þ ¼ B=2þ 1

n
C� B=2ð Þ

lim
n!1

V nð Þ ¼ B=2
ð17Þ

where the constant term (C � B/2) > 0 is equal to half the
variance reduction in relative position due to bias fixing,
and so is positive definite. Thus X(1) = 0 and V(1) = B/2,
which is half the variance of the bias-fixed relative position.
[22] Thus the correlation between different station posi-

tions is inversely proportional to the number of stations, and
becomes negligible for large networks n > 102 (as can be
verified in practice). Therefore, in the limit of large n, the
ambiguity resolution from a new station to a large network
only affects that station’s coordinates.
[23] The above stochastic properties of large bias-fixed

networks lend further evidence to suggest that accurate O(n)
algorithms are feasible. Clearly, O(n4) full network algo-
rithms when applied to large networks waste their time
computing the off-diagonal elements of the covariance
matrix, when theory predicts that they tend to vanish and so
hold negligible information content. This suggests it is
reasonable to represent the final covariance matrix of station
coordinates as block diagonal (of triplets), for which the
number of computed elements isO(n) (as is the case for PPP).

2.5. Theory of Optimal Baseline Selection

[24] As the goal is to maximize the probability of cor-
rectly resolving the ambiguities, let us select the set of n � 1
baselines that minimize the sum of distances between n
stations (a geometrical version of the ‘‘traveling salesman
problem’’). This is known as the Euclidean minimum
spanning tree (EMST). An exact solution to the EMST is
given by Kruskal’s ‘‘greedy’’ algorithm [Kruskal, 1956],
which starts with each station as its own disjoint tree in a
‘‘forest’’ (the union of all trees), then grows the trees by
iteratively adding the next shortest baseline that does not
destroy the tree by forming a cycle (i.e., does not already
have both stations within the same tree). The algorithm
stops when all stations are in one tree. The problem is that
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Kruskal’s algorithm is unacceptably slow at O(blogn) =
O(n2logn) (R. Sedgewick and K. Wayne, Minimum span-
ning tree, lecture notes for Computer Science Course 226:
Algorithms and Data Structures, 2007, available at http://
www.cs.princeton.edu/courses/archive/fall07/cos226/lectur-
es.html), where b = n(n � 1)/2 is the number of possible
baselines that can be formed from n stations.
[25] The solution to this problem uses the Delauney

triangulation on the sphere, which can be computed in
O(nlogn) [Renka, 1997]. The Delauney triangulation is the
mathematical dual of the Vornoi diagram, which is con-
structed of n polygons, each centered on station, defining
the nearest neighbor station for every possible query point
[Aurenhammer, 1991]. Station pairs are defined as nearest
neighbors if their geodesic crosses only one shared Voroi
edge. This defines a b � (3n � 6) set of baselines [Renka,
1997].
[26] The Delauney triangulation has the relevant mathe-

matical property that is a supergraph of the EMST
[Aurenhammer, 1991]. This means that all baselines of the
EMST are baselines of the Delauney triangulation of the
stations. Therefore the EMST solution of n � 1 baselines is
a subset of the b � (3n � 6) baselines from the Delauney
triangulation, so the problem reduces to finding this subset.
It follows that Kruskal’s algorithm can be used to find the
EMST as a subset of the Delauney triangulation in
O(blogn) = O(nlogn). Therefore the combined algorithm
is also O(nlogn) (where logn < 4 in our GPS universe). This
not quite the O(n) theoretical performance we seek, how-
ever in practice it proves to add negligible (�1%) compu-
tation time for networks of n < 104. This is because the
computation time is completely dominated by the bias
fixing of n � 1 independent baselines, even though this
part of the computation is O(n).
[27] For our problem, optimal baseline selection is a little

more complicated than solving for the EMST, because it
might not be possible to resolve ambiguities successfully on
a specific baseline, and alternative spanning trees must be
found. When ambiguity resolution fails, a pitfall to avoid is
the testing all possible alternative baselines, as this could
end up being an O(n2) computation. Fortunately, the Delau-
ney triangulation limits the number of baselines to b� (3n�
6), and so keeps the computation at O(nlogn).
[28] Interestingly, this points to a mechanism that might

result in overall computation time better than O(n) (which is
seemingly impossible). Consider the case of globally dis-
tributed stations. As the number of stations n increases, so
the average baseline length decreases, and so the number of
ambiguity resolution failures decrease. Therefore, the num-
ber of baselines that require bias fixing computations might
range from the Delauney triangulation limit of b � (3n � 6)
for small n, to b � n � 1 for large n. Since bias fixing
dominates the computation time, in theory it is possible to
have computation times smaller than O(n) (as a general rule,
because in practice, this will depend on specific details of
the network geometry).

2.6. Summary of Theoretical Results

[29] The following now summarizes what has been
learned from theoretical considerations, under assumptions
that should be reasonably well satisfied by continuous GPS
networks. (1) When bias fixing a network (or partly bias

fixing anywhere inside a network), the centroid of that
network remains fixed. (2) Estimates of the bias-fixed
relative coordinates between any pair of stations are insen-
sitive to bias fixing elsewhere in the network. (3) As n
becomes large, the final covariance matrix resulting from
full network bias fixing tends toward a block diagonal
structure. (4) Selection of an optimal set of n � 1 baselines
to connect the network can be computed in O(nlogn), which
for n < 104 has a computation time that is negligible
compared to O(n) bias-fixing computations.
[30] Synthesizing these theoretical results brings the con-

clusion that independent bias fixing of n � 1 baselines
together with initial PPP covariance matrices for each
station can be used to construct the full network bias fixed
solution for n stations and covariance matrix to a very good
approximation. This summarizes the theoretical rationale for
the design of the Ambizap algorithm, which is the topic of
section 3.
[31] The stated assumptions led to recommendations as to

situations when this theory may or may not be applicable,
with the key recommendation being that bias fixing should
be applied to the shortest baselines between stations that
have the same nominal observation schedules. Ultimately,
the validity of applying the theory in practice must be
proved empirically, as shown in section 4.

3. Implementation: Ambizap

3.1. Design Overview

[32] As discussed in section 2.6, the fixed point theorems
imply that a complete network solution can be constructed
as O(n) by a two-step procedure: (1) bias fix the vectors of
n � 1 linearly independent baselines and (2) perform a
network adjustment that minimizes distortion in the bias-
fixed baselines, while maintaining alignment with the
original PPP solutions. The output covariance matrix from
the network adjustment should only include the block
matrices for each individual station. This suggests that the
network adjustment in step 2 should be performed using
blocking techniques to avoid unnecessary computation of
off-diagonal covariance elements. Having a minimal set of
n � 1 baselines, in turn, suggests a kind of network
estimation filter that steps through the network tree, base-
line-by-baseline (analogous to the more familiar epoch-by-
epoch Kalman filter).
[33] The algorithm Ambizap has been encoded (and made

freely available to researchers), which is a stand-alone
computer program consisting of a C-shell script driving
FORTRAN-compiled executables. The software reads in
individual station PPP solutions, and outputs individual
station bias-fixed solutions (including covariance matrices)
that closely approximate the output of an O(n4) full network
ambiguity resolution analysis. The software reads and
writes data files in formats consistent with GIPSY OASIS
II, but in principle the algorithm could be adapted to work
with any PPP-capable software. The only internal depen-
dence on GIPSY OASIS II modules is the core ambiguity
resolution engine, ‘‘Ambigon’’ [Blewitt, 1989] which is
only applied at the single baseline level. In principle,
Ambigon could be substituted for another core engine.
[34] The three key design requirements of Ambizap were

that (1) except for ancillary tasks that take negligible
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computation time for n < 104, overall computation time
should be O(n) to accommodate all (a few thousand)
permanent GPS geodetic stations in the world today; (2)
the resulting station coordinate solutions and formal errors
should closely (<1 mm) agree with those produced by full
network ambiguity resolution, at least up to maximum
number of stations that can be processed this way (n�100
previously being a practical limit for GIPSY OASIS II
alone); and (3) adding extra stations to or removing un-
wanted stations from an existing network solution should
give an identical answer as computing a new solution from
scratch, but should be much faster to compute, for example,
by recycling old bias-fixed baseline solutions.
[35] Figure 3 shows an overview of the design of Ambi-

zap. The remainder of this section details the following
three key modular components: (1) the selection of n � 1
linearly independent baselines; (2) the preparation of the
n � 1 bias-fixed baseline solutions to facilitate implementa-
tion of theorem 2, in which a loosening transformation is
applied to each station pair covariance matrix, so that
baseline solutions can be combined into a network without
affecting the relative coordinates; and (3) network adjust-
ment of n � 1 loose baseline solutions, together with a

tightening transformation using the n original PPP coordi-
nate covariance matrices in order to compute the final
coordinate covariance matrices for each bias-fixed station.

3.2. Baseline Selection

[36] The following steps now describe how baselines are
selected, given the possibility of ambiguity resolution
failure, based on concepts of section 2.5. These steps are
illustrated on the left-hand side of Figure 3.
[37] 1. Initialize algorithm parameters relating to ambi-

guity resolution. Default values are (1) the cumulative
confidence limit at which ambiguity resolution is consid-
ered ‘‘successful’’ for a baseline Cmin = 99.5% (otherwise,
the bias is left at its real-valued estimate), and (2) the
minimum rate of success for a given baseline Smin = 50%,
such that if S < Smin, then that baseline is dropped for
consideration from candidate baselines, and a different path
is chosen to connect the network. Here S is defined as the
fraction of double difference biases for which C > Cmin.
[38] 2. Check input files against the contents of the

recycle archive, and stop if there is nothing new. Update
the archive with any new input PPP data; delete from the
archive any PPP data or bias-fixed baselines (from previous

Figure 3. Ambizap flowchart. The start and stop of the flowchart are at the top right.
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Ambizap runs) that either do not match input station names,
or have different input PPP data for either station; then
begin processing. This feature recycles old computations,
while ensuring consistency with new input data.
[39] 3. Initialize a ‘‘disjoint set data structure’’ [Galil and

Italiano, 1991] representing the forest of disjoint trees,
where each tree is a set of bias-fixed stations. This will
guarantee linear independence in the list of up to n � 1
selected baselines. This is implemented as a tabular listing
of station names and bias-fixed tree number, which are
initially all unique (1,. . .,n), indicating that nothing is yet
bias fixed. A ‘‘union find’’ algorithm will be applied
whenever a baseline is resolved that connects the two trees
i and j (thus bias fixing the union of the two trees). This
algorithm works by first finding i and j by matching the
names of the stations with the baseline (which, in turn,
might be identified by a filename in an archive of previous
baseline computations), then forming a union by setting all
j = i in the tabublation.
[40] 4. Initialize a list of candidate baselines in the form

of two station names and the baseline length. This is
achieved by applying the Delauney triangulation on the
surface of a sphere, using the STRIPAK subroutine library
by Renka [1997]. The triangulation has the feature that it
does not span any hemisphere that is devoid of stations. The
software was modified to allow for multiple stations at the
same coordinates (‘‘zero baselines’’), which can happen
when GPS receivers are attached to the same antenna. With
negligible computation time, this selects b � (3n � 6)
baselines, where b = (3n � 6) � 3n if there is no empty
hemisphere, which provides redundancy in case of ambi-
guity resolution failure. This list is then sorted in increasing
order of length.
[41] 5. Take the shortest candidate baseline on the list,

and go to the next step if a valid recycled solution exists.
Otherwise, concatenate the two independent (uncorrelated)
PPP station solutions, and then attempt to resolve as many
double-differenced ambiguities as possible. The method
implemented is the standard ambiguity resolution approach
of forming the ‘‘wide lane’’ and the ‘‘narrow lane’’ linear
combinations [Blewitt, 1989; Dong and Bock, 1989]. The
wide lane method is automatically selected [Blewitt, 1989]
from either the ionospheric minimum method or four-
observable method [Melbourne, 1985; Wübbena, 1985].
The narrow lane method is based on ionosphere-free obser-
vations, with bootstrapping applied to all satellites observed
by both stations, such that resolution of the best determined
ambiguities improves the estimates of all remaining ambi-
guities for that baseline. Note that any method could be used
at the core of this modular algorithm, including, for exam-
ple, the Lambda method [Teunissen, 1995]. Resolution of
the �30 to 50 double-differenced biases for a given baseline
continues sequentially using bootstrapping until the cumu-
lative confidence C > Cmin (multiplied over all double
difference biases). In practice for the case of a global
network, it is far more likely that any given baseline will
have C > Cmin for S = 100% of its biases when n > 103.
[42] 6. If the percentage of ambiguities resolved S > Smin,

consider the baseline to be successfully resolved, and
perform a union find operation to update the forest (see
step 3).

[43] 7. Whether successful or not, eliminate this baseline
from the candidate list, and if successful, eliminate all other
baselines that have both stations in this tree (see step 3).
[44] 8. Iteratively loop back to (5), etc., until either n � 1

baselines have been resolved, or until the candidate list of
baselines has been exhausted. Apart from the bias fixing
aspects, this iterative loop is Krustal’s algorithm.
[45] Note that in the above approach, it is possible to end

up having a forest of disconnected trees of bias fixed
baselines. Within each tree, biases are effectively resolved
between any pair of stations. Therefore network adjustment
will be performed independently for each such tree.

3.3. Baseline Preparation

[46] For two reasons, it would be a mistake to perform a
traditional weighted least squares network adjustment by
combining the n � 1 bias-fixed baseline solutions: (1) in
violation of theorem 1, such an approach would give
multiple weight to PPP solutions from stations associated
with multiple baselines (a number that on average is �2,
and rarely exceeds 5 in practice); and (2) in violation of
theorem 2, baselines combined in such a manner will in
general change their solution significantly as they are
combined. Theorems 1 and 2 model the behavior of a full
network solution (accounting for all correlations in the
network biases and coordinates) and so our algorithm needs
to emulate this. Fortunately, the theorems are simple to
implement, in that the algorithm simply needs to minimize
the distortion of baselines as they are combined, while
retaining the mean position of the network.
[47] Implementation of a network adjustment in accor-

dance with theorems 1 and 2 is facilitated by preparation of
the input data to the adjustment, which begins in the raw
form of the initial PPP estimates and covariance matrices,
and the n � 1 bias-fixed station pair estimates and covari-
ance matrices. ‘‘Measurement downdating’’ is applied to
each covariance matrix Ci � j

0 for bias-fixed station pairs i
and j, which subtracts the weight associated with the
original PPP solutions (without changing the estimates
themselves).

Ai�j ¼ C0�1
i�j � 1� eð Þ C�1

i 0

0 C�1
j

� � ��1

ð18Þ

The resulting station pair covariance matrix Ai � j represents
the pure information content that bias fixing adds to the
original PPP solution for the station pair.
[48] Setting the parameter e = 10�4 ensures numerical

stability given that there is a rank 1 deficiency predicted by
theorem 1 (that bias fixing adds no information on the
centroid). This (near) rank deficiency is desirable in this
case, as it produces a solution that is relatively free to
translate without distorting the internal geometry (relative
coordinates). Given this preparation, a conventional
weighted least squares combination of such loose baseline
solutions would produce a unique network solution that
remains centered on the original estimates (theorem 1),
while retaining the internal geometry of its bias-fixed base-
lines (theorem 2).
[49] The final covariance matrix for the entire network

can in principle be constructed by adding back the PPP

B12410 BLEWITT: MASSIVE GPS NETWORK PROCESSING—AMBIZAP

7 of 12

B12410



weights either after the estimates have been obtained, or in
such a manner that the estimates are not themselves affected
by this procedure. As explained in section 3.4, the latter
method has been developed because it only requires the
computation of covariance matrices for each station.
[50] In summary, the outputs of this step of the algorithm

are (1) the input bias-fixed station pair solutions (un-
changed), (2) each with a covariance matrix that has been
downdated using the PPP covariance matrix, and (3) the
original PPP covariance matrices. These data are then used
as input to the network adjustment algorithm. In Ambizap
(version 2.0), this preparation step is actually integrated into
the network adjustment equations to reduce computations.
However, it is useful here to have separated this step
conceptually, considering it is the part of Ambizap that uses
the fixed point theorems, and so makes it fundamentally
different than conventional least squares combination.

3.4. Network Adjustment

[51] Taking the inputs described in section 3.3, the goal of
network adjustment is to output final bias-fixed solutions
for individual stations, including estimates and covariance
matrices that closely approximate that of a full network
solution. The previous preparation enables conventional
least squares to be applied, with the exception that there
needs to be an additional customized step to compute the
final covariance matrix for each station. As indicated in
Figure 3, network adjustment is applied independently to
each successfully bias-fixed tree.
[52] A practical problem is that a conventional network

adjustment is typically O(n3) unless the sparse nature of the
design matrix is exploited (for example, Helmert blocking).

The implemented method takes the blocking concept to its
logical extreme, in the form of a network estimation filter
that steps through the network tree adding baseline infor-
mation at each step, and taking care not to count PPP
information twice. This method is extreme, in that it only
produces a single block matrix for each station, which in our
case, is precisely what we are looking for. Even though the
full covariance matrix is not computed, the actual estimates
are exact (just as Helmert blocking and Kalman filtering are
exact), and the computation is O(n) (analogous to Kalman
filtering, where n is the number of epochs). It turns out that
network adjustment using the following filtering approach
takes �1% of the computation time of O(n) bias fixing for
n � 1 baselines, and so as a whole takes negligible time.
(This stands in contrast to prototype implementations of
Ambizap using conventional O(n3) least squares network
adjustment, which begins to dominate the total computation
time at n � 103).
[53] The network adjustment algorithm is now summa-

rized here in conceptual terms. The algorithm is a filter/
smoother that operates on a tree structure (Figure 4) defined
by n stations connected by n � 1 baselines. Any of the
stations can be arbitrarily selected as the ‘‘root’’ (top) of the
tree, which then descends by connected baselines, branch-
ing out at junctions, until finally each subbranch is termi-
nated by a singly connected node, each representing a
‘‘leaf’’ of the tree.
[54] Filtering begins at these leaf stations, and adds

information as the filter moves up the tree. At each junction,
the filter combines information between different branches.
When the filter reaches the top of the tree, it has found the
final solution for the root station (and only the root station).
[55] Using this solution as a priori information, the filter

then goes backward down the tree, an operation called
‘‘smoothing’’ in filtering theory, or ‘‘back-substitution’’ in
blocking theory. Information is then added as the smoother
moves down the tree, at each step writing out the final
solution for each station encountered. When a leaf station is
encountered, the smoother jumps back to the last junction
and continues until all leaf stations solutions have been
computed and written to individual station solution files.
[56] A modification is made to the smoothing algorithm

that allows for computation of the final station covariance
matrix without disturbing the parameter estimates. This is
achieved adding the PPP covariance in the smoother, start-
ing with the root station.
[57] It is the O(n) steps in the structure of the overall

computation that makes the filter so fast, and the method
used to add information at each step on the tree is not
important. Any manner of Kalman filter or square root
information filter would accomplish the task without any
significant effect on the overall performance of Ambizap. In
Ambizap, conventional least squares is applied at each step
to simplify readability and maintenance of the code, as it
only involves inversions of 6 � 6 matrices, with negligible
computation time.
[58] Testing proves that, with the exception of the inten-

tional effect of baseline preparation discussed previously,
the solution is identical to that of a conventional O(n3) least
squares combination of baselines. (Of course, only block
diagonal elements of the covariance matrix are computed,
but this does not limit solution accuracy). The solution is

Figure 4. Diagram illustrating the network adjustment
filter/smoother structure: (a) physical network showing the
Delauney triangulation, where selected baselines (here, the
EMST) are arrows that indicate the flow of information in
the filter (opposite for the smoother); (b) logical network as
a tree. The numbers indicate the order of processing, the
first number being for the filter, the second for the smoother.
The root station ‘‘11’’ (at the top of the tree) has the last
filter solution, which initializes the first smoother solution.
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independent of choice of the root station (in fact, alphabet-
ical order is used).
[59] As a final note on software engineering, the network

adjustment software (‘‘netmrg’’) is recursive, where input
arguments refer to each branch of the tree below as a new
problem to solve. The recursive loop starts at the root
station, calling new instances at each station down the tree.
The loop is broken when reaching a leaf station of the tree,
where the output solution simply equals the input solution.
This is the first output filter solution. This information then
feeds into the calling routine (next station up the tree),
which then combines the information, and so on, until the
calling program (for the root station) is reached. The
smoother is basically the same recursive engine in reverse,
writing output solutions before calling itself at each node.
Recursion simplifies the code, as it does not need to model
specific tree structure.

4. Testing

[60] This section presents the results of some basic tests,
including validation of the baseline selection algorithm;
timing of computation as a function of number of stations,
and validation of O(n) performance; validation that Ambi-
zap gives positioning results that closely approximate full
network ambiguity resolution; and verification that Ambi-
zap improves positioning precision and accuracy, as should
be the case if ambiguities are accurately resolved. The tests
are intentionally not exhaustive, as ultimately the perfor-
mance of Ambizap is better assessed by independent
investigators for their specific geodetic problems at hand.
The goal here is to provide evidence that both the under-
lying theory and practical implementation are basically
sound.

4.1. Baseline Selection

[61] As a basic validation of the baseline selection algo-
rithm (as explained section 3.2 and Figure 3), Figure 5 plots
an example of all baselines selected on a typical (recent)
day, in this case 17 July 2007. On this day, 2570 stations
were processed, only one of which failed to be ambiguity
resolved to the global network. Thus 2568 bias-fixed base-
lines are plotted here. By inspection, the resulting tree
appears to closely approximate the EMST (section 2.5). In
generally the tree will not be the EMST, as there are cases
where ambiguity resolution fails, and another line of the
Delauney triangulation is selected instead. Figure 6 shows
in greater detail the selection of baselines in North America.
[62] Apart from validating the software, inspection of

such plots reveals the weakest links in the global GPS
network, corresponding to regions spanned by the longest
baselines in the EMST. Such plots may assist in determining
suitable locations of new stations to improve the probability
of success of global ambiguity resolution. Such plots also
indicate large regions where network ambiguity resolution
is likely to be extremely robust, such as the contiguous
United States, Europe, Japan, New Zealand, and South
Africa. Therefore, sections 4.3 and 4.4 select North America
as a region to test the improvement in positioning precision
and accuracy that is attributable to Ambizap (following
PPP).

4.2. Processing Time

[63] Run times for Ambizap were recorded (Figure 7) as a
function of number of stations in the range 10 � n < 2000.
The computations were performed on a single 3-GHz Xeon
CPU. For n < 100 the network tested was regional, in
western North America. For n > 1000 the network is
necessarily global (to find data from that many stations).

Figure 5. Global network of GPS stations that are routinely analyzed continuously at University of
Nevada, Reno, using JPL’s GIPSY-OASIS II software implementing the PPP method [Zumberge et al.,
1997] followed by the Ambizap method. Shown here, for example, are the 2568 baselines that were
selected on 17 July 2007 by the procedure illustrated in Figure 3, then successfully bias fixed and
network adjusted according to Figure 4. Only one path connects any pair of stations. Details of baselines
in North America are shown in Figure 6.
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[64] For comparison, run times were also computed for
full network ambiguity resolution using modules distributed
with the GIPSY-OASIS II software. These modules use core
engine for bias fixing, known as Ambigon [Blewitt, 1989],
which is the same engine at the core of Ambizap (for which
it only operates on station pairs). Two implementations of
full network ambiguity resolution were tested: (1) pure
Ambigon, which implements full network bootstrapping
over the entire network, and (2) Ambigon_p1 [Hurst,
2001], which is an iterative wrapper around Ambigon,
operating on clusters of stations.
[65] The results (Figure 7) show that Ambizap perfor-

mance is approximately O(n), and so meets this key design
specification. There appears to be slightly slower perfor-
mance than O(n) for n < 100 and slightly faster performance
than O(n) for n > 100. As discussed at the end of section
2.5, deviations from O(n) can be expected depending on the
failure rate of ambiguity resolution, in particular, the failure
rate does tend to drop at high n for the global-scale network
that was analyzed at n > 100. At the smallest values of n, the
failure rate also drops, as the network becomes regional in
scale. Thus the small deviation from O(n) is caused by a
slight hump in failure rates, causing more candidate base-
lines (in the Delauney triangulation) to be bias fixed. In any
case, the deviation from O(n) is rather small, and there is no
hint of a transition to O(nlogn) behavior at high n (tested to
n � 3000).
[66] In terms of speed relative to PPP, Ambizap’s pro-

cessing time is �5 s per station, as compared to PPP’s �12 s
per station. Thus Ambizap adds only a fraction of overhead
to PPP processing time. Moreover, the solutions are block
diagonal, and so can be written out into individual station
files in exactly the same format as for PPP. In contrast full
network ambiguity resolution by Ambigon displays O(n4)
behavior, making it impractical to process (and test) net-
works of n > 100. The clustered bootstrapping method of
Ambigon_p1 clearly outperforms Ambigon on its own, but
nevertheless shows the same O(n4) behavior.
[67] Ambizap is now routinely applied at UNR for the

analysis of �3000 stations from the global network (at the
time of writing, mid-2008), with PPP initially applied using

JPL’s GGN products. Using this method, UNR has pro-
cessed most of the world’s GPS geodetic data back to 1994
(Figure 1) when GGN/IGS products became available
[Beutler et al., 1994], with �10 days of data processing
on a �40 � 3 GHz Xeon CPU cluster (using custom cluster

Figure 6. A zoomed view of Figure 5, showing details of 1554 stations and their selected baselines in
North America. The dense cluster in the western United States is dominated by the EarthScope Plate
Boundary Observatory.

Figure 7. Log-log plot of run times for Ambizap versus
number of stations up to n = 2000, computed on a single
3-GHz Xeon CPU. Ambizap demonstrates behavior con-
sistent with O(n) (slope of unity). Shown for comparison are
full network bootstrapping techniques showing O(n4)
behavior, and the initial PPP computation, which is exactly
O(n) (by definition). For convenience, the time scale on the
right is in the format hours:minutes:seconds (hh:mm:ss).
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software with a passive server/demanding client model).
Most of the sites analyzed at UNR (�1600) are in North
America (Figure 6).

4.3. Estimator Accuracy

[68] Estimator accuracy here is defined as the difference
between coordinate estimates produced on the one hand by
the Ambizap algorithm developed here and on the other
hand by the Ambigon_p1 cluster bootstrapping algorithm.
(Note that Ambigon and Ambigon_p1 are both rigorous full
network algorithms and so give identical results). Estimator
accuracy is not a measure of how accurate the estimated
positions are (which is discussed in sections 4.4 and 4.5).
Rather it is a measure of how well the Ambizap algorithm
reproduces the results of full network ambiguity resolution.
[69] Estimator accuracy was tested by processing data

from a regional network of 30 stations in the southern
BARGEN array of western North America in the time
frame 2003.0–2006.9. This gave 41,625 daily station co-
ordinate differences for each of the east, north, and vertical
component. A frequency plot of the resulting differences is
presented in Figure 8. The estimator accuracy has an RMS
(about zero) of 0.43 mm (north), 0.76 mm (east), and
1.67 mm (vertical). This is to be compared with RMS
between Ambizap and the initial daily PPP solutions of
0.56 mm (north), 3.51 mm (east), and 2.17 mm (vertical).
The variance ratio in the east component is 21.3, indicating
that the difference between Ambizap solutions and Ambi-
gon solution is negligible when compared to the difference
with the initial PPP solution. Therefore Ambizap proves to
meet the key design requirement of closely replicating the
Ambigon solution with orders of magnitude less processing
time.

4.4. Positioning Precision

[70] If ambiguity resolution is working correctly, we
should expect (on the basis of covariance analysis and
previous tests [e.g., Blewitt, 1989]) significant improve-
ments to coordinate precision in the east component for
stations at midlatitudes. Positioning precision was assessed

by comparing results from Ambizap versus initial PPP of
the long-term daily coordinate repeatability of stations with
long, unbroken time series in the dense North American
cluster.
[71] Figure 9 shows a typical example of detrended

coordinate time series before and after the application of
Ambizap to PPP solutions in a realization of a stable North
America reference frame. The mean repeatability (RMS
residual) is significantly improved in the east component
from 2.6 mm before ambiguity resolution, to 1.6 mm after
ambiguity resolution. This indicates that the initial estima-
tion of biases as real-valued parameters adds noise to the
time series at the level of 2.0 mm, which is removed by
ambiguity resolution. It is also evidence that Ambizap is
working as intended.

4.5. Geodetic Accuracy: Velocities in ‘‘Stable North
America’’

[72] If ambiguity resolution is working correctly, we
should also expect positioning accuracy to improve, as
has been demonstrated by comparison with independent
positioning techniques [Blewitt, 1989]. GPS accuracy has
become difficult to test due to the lack of colocated
independent techniques of significantly higher accuracy.
Another way to assess geodetic accuracy is to compare
station velocities (fitting the position time series) to a simple
geophysical model [Davis et al., 2003].
[73] Here the accuracy of site velocities is estimated by

assuming zero motion (with respect to a nonrotating refer-
ence frame) for stations located in the stable plate interior of
North America, far from tectonic effects and regions known
to be deforming from glacial isostatic adjustment [Sella et
al., 2007; Calais et al., 2006]. The analysis imposes the
additional stringent criterion that the sites must have been
continuously operating during the years 2000–2007, with
no discontinuities in the time series (as a result of equipment
configuration changes). The results show that the RMS of
the east velocities is 0.9 mm/a in stable North America
before running Ambizap, reducing to 0.7 mm after running
Ambizap. (The RMS north and vertical velocities do not

Figure 8. Frequency plot of estimator accuracy, defined as
the difference between coordinate estimates produced by
Ambizap and Ambigon in full network (bootstrapping)
mode.

Figure 9. A typical example of coordinate time series
before and after the application of Ambizap to PPP
solutions, for station PATT in the east component
(detrended).
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change.) This is independent evidence that Ambizap is
improving accuracy.

5. Conclusions

[74] A new algorithm known as Ambizap has been
demonstrated for the bias fixing of continuous GPS net-
works. Ambizap is based on a new theoretical foundation of
fixed point theorems, stochastic properties of large bias-
fixed networks, and the application of existing theory on
minimum spanning trees.
[75] Ambizap demonstrates submillimeter agreement

with classical full network algorithms, but computes the
result as O(n) rather than O(n4), which is currently the case
for the GIPSY OASIS II software in common use for high-
precision geodesy. For example, a 2000-station network can
be bias fixed in 2.5 h on a 3-GHz single CPU computer.
This allows for the rapid ambiguity resolution of global
networks of several thousands of stations, whereas current
O(n4) algorithms are limited to networks of <100 stations,
requiring ad hoc methods to combine smaller network
solutions. In contrast, Ambizap produces a unique solution
without any assignment of stations to networks (indeed,
there is only one network), which radically facilitates data
management. Moreover, the addition of extra station data to
a network solution is very straightforward and fast, thus
removing the operational burden of waiting until all poten-
tial data are in hand prior to performing a network analysis.
[76] Application of the Ambizap algorithm will greatly

assist analysis of crustal movement in regions such as the
western North America, which have dense overlapping GPS
networks. For example, a network solution from 1 day of
the �1000 station Plate Boundary Observatory can be
produced from RINEX files in about 7 min on a 40-CPU
cluster (4.5 min PPP + 2.5 min Ambizap). Note that, on
theoretical grounds, Ambizap is not optimally suited for the
analysis of GPS campaign data.
[77] What is perhaps most significant is that the improve-

ment in precision and accuracy allows for finer temporal
resolution on station displacements, which is important for
resolving transient signals, such as postseismic deformation.
Since Ambizap can produce a unique dense network solu-
tion for the entire globe, this enhances the potential to detect
transient signals from local to global scales, without need to
predefine the networks subject to investigations. This
should therefore enhance paths to future discovery in the
application of geodesy to tectonophysics and geodynamics.
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