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S U M M A R Y
Inversion of geodetic site displacement data to infer surface mass loads has previously been
demonstrated using a spherical harmonic representation of the load. This method suffers from
the continent-rich, ocean-poor distribution of geodetic data, coupled with the predominance of
the continental load (water storage and atmospheric pressure) compared with the ocean bottom
pressure (including the inverse barometer response). Finer-scale inversion becomes unstable
due to the rapidly increasing number of parameters which are poorly constrained by the data
geometry. Several approaches have previously been tried to mitigate this, including the adoption
of constraints over the oceanic domain derived from ocean circulation models, the use of
smoothness constraints for the oceanic load, and the incorporation of GRACE gravity field data.
However, these methods do not provide appropriate treatment of mass conservation and of the
ocean’s equilibrium-tide response to the total gravitational field. Instead, we propose a modified
set of basis functions as an alternative to standard spherical harmonics. Our basis functions
allow variability of the load over continental regions, but impose global mass conservation and
equilibrium tidal behaviour of the oceans.

We test our basis functions first for the efficiency of fitting to realistic modelled surface loads,
and then for accuracy of the estimates of the inferred load compared with the known model
load, using synthetic geodetic displacements with real GPS network geometry. Compared
to standard spherical harmonics, our basis functions yield a better fit to the model loads
over the period 1997–2005, for an equivalent number of parameters, and provide a more
accurate and stable fit using the synthetic geodetic displacements. In particular, recovery of the
low-degree coefficients is greatly improved. Using a nine-parameter fit we are able to model
58 per cent of the variance in the synthetic degree-1 zonal coefficient time-series, 38–41 per
cent of the degree-1 non-zonal coefficients, and 80 per cent of the degree-2 zonal coefficient.
An equivalent spherical harmonic estimate truncated at degree 2 is able to model the degree-1
zonal coefficient similarly (56 per cent of variance), but only models 59 per cent of the degree-2
zonal coefficient variance and is unable to model the degree-1 non-zonal coefficients.

Key words: geodesy, geocentre, global positioning system (GPS), spherical harmonics,
surface mass loading, water cycle.

1 I N T RO D U C T I O N

Forward modelling of geodetic site displacements due to surface

mass loading is frequently performed using gridded surface mass

data sets and a Green’s function approach (e.g. Farrell 1972), but be-

cause these Green’s functions are reference frame dependent, it may

be difficult to account properly for the effects of geocentre motion

(Blewitt 2003). Spherical harmonic representation allows the trans-

parent use of the correct reference frame dependent Love numbers

and so does not suffer from this drawback in forward modelling,

but fine-scale (higher-degree) inversion of surface mass loads from

geodetic displacements becomes unstable due to the continent-rich,

ocean-poor distribution of the geodetic data (Wu et al. 2002). A

further problem, which affects both the Green’s function and spher-

ical harmonic methods, but is more readily correctable using the

spherical harmonic approach, is the appropriate treatment of mass

conservation and of the ocean’s equilibrium-tide response to the total

gravitational field (Dahlen 1976; Wahr 1982; Mitrovica et al. 1994;

Blewitt & Clarke 2003; Clarke et al. 2005). The primary aim of this

paper is to show how a modified set of basis functions derived from

mass-conserving, tidally equilibrated, land area-masked spherical

harmonics can be used to overcome some of these limitations.

C© 2007 The Authors 1
Journal compilation C© 2007 RAS



July 30, 2007 14:36 Geophysical Journal International gji3493

2 Peter J. Clarke et al.

0 50 100 150 200 250

mm water rms

Figure 1. Root mean square weekly variability in surface mass load over

the period 1997–2005 (expressed as the height of an equivalent column of

sea water), predicted by the combination of the LaD (continental hydrology),

NCEP reanalysis (atmospheric pressure) and ECCO (ocean bottom pressure)

models, corrected for overall mass conservation.

Our target is the robust estimation of surface mass loading at

weekly and longer timescales. Fig. 1 shows the spatial variation of

the root mean square (rms) weekly change in total surface mass load

predicted by some recent models over the period 1997–2005. The to-

tal load comprises three components. Firstly, it includes land hydrol-

ogy, here taken from the LaD model (Milly & Shmakin 2002), which

assimilates selected river discharge data into a global model of water

and energy balance. Secondly, it incorporates ECCO ocean bottom

pressure data (http://www.ecco-group.org) which results from the

assimilation of wind stress, heat flux and freshwater flux obser-

vations into a global ocean circulation model. Thirdly, it includes

atmospheric pressure data from the NCEP reanalysis (Kalnay et al.
1996); this is set to zero over the oceans, and we apply the mass

conservation procedure of Clarke et al. (2005) which effectively

provides the required inverse barometer correction. It is readily ap-

parent that the variability in the continental load is far greater than

that over the oceans.

If standard spherical harmonics are used as basis functions to

describe this surface mass load (or the corresponding surface dis-

placements), a high truncation degree is required to represent the

coastline in sufficient detail and maintain a smooth, small oceanic

load. Conversely, when inverting geodetic surface displacement data

to estimate the load, little information is available over the oceans,

so the solution becomes biased and unstable even at low degrees

unless a priori oceanic constraints are applied (Wu et al. 2003,

2006; Kusche & Schrama 2005). Moreover, the actual variability in

oceanic load is predominantly that due to ocean–land mass transfer

and the ocean’s equilibrium tidal response to the land load, not that

due to other changes in the ocean (Clarke et al. 2005).

We therefore desire an alternative means of representing the sur-

face mass load, that is consistent with the physics of the ocean’s

response to the total load, and is adapted to but not unduly con-

strained by the expected characteristics of the load. In other words,

the basis functions must allow considerable spatial variability over

land but preserve a smooth oceanic domain, whilst conserving mass

globally. In this paper, we present and test a modified spherical har-

monic basis that achieves this goal. In some respects, the method

is analogous to the use of spherical cap harmonics or Slepian func-

tions (e.g. Thébault et al. 2004; Simons & Dahlen 2006) in that it is

a data-driven approach with minimal physical model assumptions,

but the approach is here adapted to the specific physical problem of

the spatial distribution of oceans and continents.

2 F O R M I N G T H E B A S I S F U N C T I O N S

We adopt the spherical harmonic convention used by Blewitt &

Clarke (2003) but with 4π -normalization applied. Briefly, we use

classical, real-valued spherical harmonics with the phase convention

of Lambeck (1988). Expressing all loads in terms of the equivalent

height of a column of sea water, density ρ S , the total time-variable

load T may be expressed as a function of geographic position �

(latitude φ, longitude λ) as

T (�) =
∞∑

n=1

n∑
m=0

{C,S}∑
�

T �
nmY �

nm(�). (1)

Summation begins at n = 1 because conservation of mass requires

that T 00 should vanish, although as discussed by Blewitt & Clarke

(2003) a degree-zero term could be included to absorb any measure-

ment scale error. The resulting change in potential at the reference

surface (the initial geoid), due to the effect of the load itself and the

accompanying deformation of the Earth, is (Farrell 1972)

V (�) = 3gρS

ρE

∞∑
n=1

n∑
m=0

{C,S}∑
�

1 + k ′
n

2n + 1
T �

nmY �
nm(�), (2)

where ρ E is the mean density of the solid Earth, g is the acceleration

due to gravity at its surface, and k ′
n is the static gravitational load

Love number for degree n. The surface of the solid Earth will change

in height by

H (�) = 3ρS

ρE

∞∑
n=1

n∑
m=0

{C,S}∑
�

h′
n

2n + 1
T �

nmY �
nm(�) (3)

and will be displaced eastwards and northwards by

E(�) = 3ρS

ρE

∞∑
n=1

n∑
m=0

{C,S}∑
�

l ′
n

2n + 1
T �

nm

∂λY �
nm(�)

cos ϕ

N (�) = 3ρS

ρE

∞∑
n=1

n∑
m=0

{C,S}∑
�

l ′
n

2n + 1
T �

nm∂ϕY �
nm(�), (4)

where h′
n and l ′

n are the height and lateral load Love numbers,

respectively. The degree-1 Love numbers h′
1 and l ′

1 are specific to the

chosen reference frame (Blewitt 2003). In this paper, we use Love

numbers derived (D. Han, personal communication, 1998) using

the spherically symmetric, non-rotating, elastic, isotropic PREM

Earth model (Dziewonski & Anderson 1981) and expressed in the

reference frame of the centre of mass (CM) of the whole Earth

system (Blewitt 2003).

Rather than using standard spherical harmonic functions Y �
nm (�),

we form initial basis functions B ′�
nm (�) by masking each Y �

nm (�)

using an ocean function C(�), defined to be zero in land areas and

unity over the oceans:

B ′�
nm(�) = {1 − C(�)} · Y �

nm(�) ≈
N ′∑

n′=0

n′∑
m′=0

{C,S}∑
�′

a′�,�′
nm,n′m′ Y �′

n′m′ (�).

(5)

The coefficients a′�,�′
nm,n′m′ can be derived from the spherical har-

monic expansion of C(�), to arbitrary degree and order, using

Clebsch–Gordan coefficients for multiplication in the spectral do-

main (Blewitt et al. 2005), although in our case (5) is truncated at

degree N ′. In this paper, we set N ′ to 30, which allows our basis
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functions to represent the coastline of all major land masses accept-

ably. Note that the summation in eq. (5) begins at n′ = 0, not n′ =
1, because each B ′�

nm (�) may involve a gain or loss of mass from

the land area which, after masking, will no longer be balanced by

mass changes in the oceanic domain.

We then correct these raw B ′�
nm (�), which are non-zero on land

only, by adding an oceanic term S(�). This term represents the ‘sea

level equation’ (Dahlen 1976) which enforces global mass conser-

vation and allows the ocean to respond gravitationally to the land

load:

B�
nm(�) = B ′�

nm(�) + S�
nm(�)

S�
nm(�) = C(�) · {[V (�) + 
V ]/g − H (�)}, (6)

where the spatially varying terms H (�) and V (�) are the Earth

response to a total load B�
nm (�) as defined in (2) and (3), and

the spatially constant term 
V accounts for global conservation of

mass. The coefficients of B ′�
nm (�) and B�

nm (�) implicitly have the

same units as T (�), that is, height of an equivalent column of sea

water. Eqs (2), (3) and (6) are solved by the method of Clarke et
al. (2005). Here, we take initial spherical harmonics Y �

nm (�) from

degree zero to degree and order 10, truncating the ocean function at

degree 40, and our final B�
nm (�) at degree 30. Because of selection

rules governing the non-zero products of two associated Legendre

polynomials (see appendix B of Blewitt & Clarke 2003), the latter

truncation is the maximum degree that is always exactly computed

for our truncation of Y �
nm (�) and C(�).

We now have corrected basis functions B�
nm (�) defined by their

truncated spherical harmonic expansions:

B�
nm(�) =

N ′∑
n′=1

n′∑
m′=0

{C,S}∑
�′

a�,�′
nm,n′m′ Y �′

n′m′ (�) (7)

noting that this summation begins from n′ = 1 because these func-

tions are mass-conserving. It might be argued that compared with

standard spherical harmonics, these basis functions are less able to

represent general surface mass loads, because following eqs (5) and

(6) the only signal that can be represented in oceanic regions is the

mass-conserving equilibrium tidal response. However, we reiterate

that dynamic ocean loads are small compared with loads over the

continents (Fig. 1). We will show in Section 3 that the new basis

functions are capable of better overall representation of typical sur-

face loads, for a given number of coefficients, and in Sections 4

and 5 that they permit a more stable and globally accurate inversion

from realistic geodetic data.

Although it is not strictly necessary, we normalize the coefficients

a�,�′
nm,n′m′ such that∫∫

βφ
nm(�)βφ

nm(�) cos ϕdϕdλ = 1. (8)

However, the B�
nm (�) are not orthonormal; in general∫∫

βφ
nm(�)β

φ′
n′m′ (�) cos ϕdϕdλ �= 0 (9)

unlike the analogous spherical harmonic functions. Fig. 2 shows

the departure from orthogonality. This is generally small, but some

prominent differences are seen, arising from the strong global asym-

metry of continent–ocean distribution. Because our basis functions

are not orthogonal, we must fit them to data by least squares rather

than global convolution. In practice, this is not the disadvantage

compared with standard spherical harmonics that it might first ap-

pear, because convolution can in any case only be applied to global

data sets and not to the discrete site displacements that are obtained

from a real geodetic network.

In the following sections, we will assess the utility of our basis

functions by comparing the goodness of fit of a set of N̄ (N̄ + 2) co-

efficients T �
nm for standard spherical harmonic functions, truncated

at degree N̄ , to a synthetic data set based on a known load T̄ (�)

T̄ (�) ≈ T (�) =
N̄∑

n=1

n∑
m=0

{C,S}∑
�

T �
nmY �

nm(�) (10)

with the goodness of fit of a set of (N + 1)2 coefficients T̂ �
nm for

our new basis functions corresponding to spherical harmonics up to

degree N , to the same synthetic data set

T̄ (�) ≈ T̂ (�) =
N∑

n=0

n∑
m=0

{C,S}∑
�′

T̂ �
nm B�

nm(�). (11)

After estimation, we may compare the goodness of fit in the spa-

tial domain, or perform a coefficient-by-coefficient comparison by

transforming the T̂ �
nm into coefficients T̃ �

nm of standard spherical har-

monics using eqs (7) and (11):

T̂ (�) =
N∑

n=0

n∑
m=0

{C,S}∑
�′

T̂ �
nm B�

nm(�)

=
N∑

n=0

n∑
m=0

{C,S}∑
�

T̂ �
nm

{
N ′∑

n′=1

n′∑
m′=0

{C,S}∑
�′

a�,�′
nm,n′m′ Y �′

n′m′ (�)

}

=
N ′∑

n′=1

n′∑
m′=0

{C,S}∑
�′

{
N∑

n=0

n∑
m=0

{C,S}∑
�

a�,�′
nm,n′m′ T̂ �

nm

}
Y �′

n′m′ (�)

=
N ′∑

n′=1

n′∑
m′=0

{C,S}∑
�′

T̃ �′
n′m′ Y �′

n′m′ (�), (12)

where

T̃ �′
n′m′ =

N∑
n=0

n∑
m=0

{C,S}∑
�

a�,�′
nm,n′m′ T̂ �

nm . (13)

Note again that in eq. (12) the upper degree limit N ′ refers to

the level of detail to which the basis functions are themselves rep-

resented in eq. (7). This is not related to the number of estimated

coefficients in eq. (11), which depends on N ; in general, N ′ �
N .

3 E F F I C I E N C Y O F F I T T O S Y N T H E T I C

L OA D DATA

The efficiency of a set of basis functions may be expressed as the

number of coefficients that is required to explain a certain pro-

portion of the variance in a data set. We test the efficiency of our

basis functions by fitting them to the synthetic load data set de-

scribed above, evaluated at weekly intervals spanning GPS weeks

0898–1322 (mid-week dates 23 Mar 1997–08 May 2005). The atmo-

spheric and oceanic components of the load are obtained by weekly

averaging of the 6-hourly NCEP and ECCO data, respectively. The

continental water storage component is linearly interpolated from

the monthly outputs of the LaD model. Each component of the load

is represented using spherical harmonics up to degree 100. The total

load is first corrected to enforce conservation of mass and the tidal

oceanic response, and then evaluated at points on a global 2◦ × 2◦

grid.

As Fig. 3 shows, our basis functions consistently require fewer

coefficients to model a given fraction of the variance in the synthetic

data set, compared with the equivalent spherical harmonic basis set.

The saving in number of parameters to achieve the same goodness

C© 2007 The Authors, GJI
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Figure 2. Departure from orthogonality of the normalized basis functions B�
nm (�). The function number is given by n(n + 1) + m for � = C , and

n(n + 1) − m for � = S.
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Figure 3. Mean and standard deviation, over the period 1997–2005, of the

percentage of load variance fitted by standard spherical harmonics (solid

line and shaded area) and by the new basis functions (dashed line and dotted

bounds), as a function of the number of estimated parameters at each epoch.

of fit is typically a factor of 2–3, that is, the new basis functions

are as good a spherical harmonic fit truncated one or two degrees

higher. We conclude that our basis functions are well suited to the

description of realistic surface mass loads, even though they impose

no a priori information of the behaviour of the dominating conti-

nental hydrological and atmospheric components of the load, nor of

dynamic ocean circulation effects.

4 G L O B A L A C C U R A C Y O F F I T

T O S Y N T H E T I C L OA D I N G

D I S P L A C E M E N T S

The inverse problem faced by geodesists differs from the above in

two respects. First, the global surface displacement field is attenu-

ated at higher degrees, compared with the load, and this worsens the

estimation of the higher-degree load coefficients. More importantly,

real geodetic displacement data do not sample the planet evenly, and

the sampling is biased towards continental regions (for GPS data,

particularly western Europe and North America). Goodness of fit

at the sample locations does not necessarily imply global fidelity of

the estimated load to the true signal. Because we are here using a

synthetic data set, we can test the accuracy of our fit by comparing

the known load with that generated from our estimated coefficients,

over the entire Earth’s surface. This will allow us to compare the

sampling bias that occurs when using our basis functions with the

bias that occurs when using standard spherical harmonics.

We test accuracy of fit by using the synthetic surface mass load

time-series described above to generate weekly 3-D displacements at

C© 2007 The Authors, GJI
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Figure 4. The JPL (left-hand side) and SIO-reanalysis (right-hand side) AC networks for GPS weeks 0898 (top) and 1322 (bottom).

sites in the International GNSS Service (IGS) network, from which

we estimate the surface mass load. The geometry and spatial sam-

pling density of the IGS network have changed significantly since

its inception in the early 1990s, but the weekly solutions obtained by

individual Analysis Centres (ACs) do not necessarily reflect these

changes directly. For example, ACs may choose to maintain a more

or less even global distribution of sites at the expense of the total

number of sites processed, or they may prefer to focus on a particular

region. To illustrate these network-specific effects, we perform our

weekly estimations using site distributions from two AC networks

typifying these differing strategies (Fig. 4). The NASA Jet Propul-

sion Laboratory (JPL) AC solutions contain a slowly increasing

number of sites, from ∼40 in 1997 to ∼75 in 2005, but the inter-

hemispheric site distribution remains roughly constant, with ∼50,

∼60 and ∼60 per cent of sites in the hemispheres centred on the

positive X , Y and Z axes respectively (a perfectly even network

would have 50 per cent of its sites in each hemisphere). In con-

trast, the Scripps Institution of Oceanography (SIO) reanalysis AC

solutions enlarge dramatically over the same period from ∼90 sta-

tions in early 1997 to ∼130 from late 1998 onwards, with roughly

constant interhemispheric bias at a higher level that that of the JPL

AC (∼40, ∼60 and ∼75 per cent of sites in the positive X , Y and

Z hemispheres).

At each weekly epoch, the site coordinates in the AC solution

(or their residuals to the long-term trend) will contain correlated

random errors with stochastic properties that should be reflected

in the variance–covariance matrix (VCM). The magnitude of the

coordinate variances and the structure of the VCMs will change

with time, depending on a number of factors including not only

GPS network distribution and data volume but also advances in

the models applied in GPS analysis software. We incorporate these

factors into our investigation by adding random noise to each syn-

thetic weekly data set, with a VCM derived from the appropriate

weekly AC solution. The JPL and SIO ACs should both adhere

to the same IERS standards (McCarthy 1996; McCarthy & Petit

2004) in their analysis, but JPL and SIO use different processing

strategies and software (GIPSY/OASIS II and GAMIT/GLOBK,

respectively). We account for issues of absolute VCM scaling that

arise from this, by rescaling each weekly VCM so that the variance

of unit weight after estimating linear site velocities is unity. Be-

cause this solution does not include loading parameters, the rescal-

ing will result in a slightly conservative but nonetheless realistic

estimate of the VCM. However, the estimated load will only depend

on intersite correlations and the relative weighting of sites within a

weekly AC solution; the absolute scaling of the VCM is of secondary

importance.

Systematic errors caused by spatial and temporal correlations in

real GPS data that are not properly modelled in the AC processing

will not be reflected in the VCM, and these may affect the estimation

of loading parameters from real data. Based on the comparison of

geocentre motion estimates from GPS data, SLR data and surface

mass load models, Lavallée et al. (2006) suggest that the effects

of such systematic errors on low-degree coefficients of the surface

mass load are small. In any case, systematic errors will have little

effect on our assessment of the relative performance of different

basis function sets.

We estimate a set of N̄ (N̄ + 2) coefficients for standard spherical

harmonic functions, truncated at degree N̄ , to each weekly synthetic

data set according to eq. (10). Similarly, we estimate (N + 1)2 coeffi-

cients for our new basis functions derived from spherical harmonics

up to degree N , to the same synthetic data sets. Henceforth, we re-

fer to both N̄ and N as the maximum degree of fit, because these

quantities relate to the number of estimated parameters, although

the new basis functions are expanded to the much higher degree N ′

(N ′ = 30 in this paper).

The goodness of fit between the synthetic and estimated surface

mass loads can be considered in a variety of ways. Fig. 5 shows

the rms true (synthetic) degree amplitudes compared with the rms

estimated degree amplitude and rms misfit degree amplitude for

both sets of basis functions, computed over the entire time-series.

The degree amplitudes An are defined for the set of coefficients T �
nm

by:

A2
n =

n∑
m=0

{C,S}∑
�

(
T �

nm

)2
(14)

and similarly for Ãn in terms of T̃ �
nm . The misfit degree ampli-

tudes �2
n with respect to the coefficients T̄ �

nm of the known load are
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Figure 5. Root mean square degree amplitude of the estimated load (solid

lines) and misfit degree amplitude (pecked lines) using standard spherical

harmonic basis functions (black/dotted lines with crosses), and the new ba-

sis functions (grey/dashed lines and triangles), computed over the entire

time-series for various maximum degrees of fit. The true (synthetic) degree

amplitude is shown as a heavy line in each plot. Amplitude units are mm

of sea water equivalent to the surface load. (left-hand side) SIO network,

(right-hand side) JPL network.

given by:

�2
n =

n∑
m=0

{C,S}∑
�

(
T �

nm − T̄ �
nm

)2
. (15)

We see that the spherical harmonic basis leads to higher misfit

levels and tends to overestimate the degree amplitude, whereas us-

ing the new basis results in degree amplitudes close to the synthetic

‘truth’, and lower misfit levels suggesting a favourable signal-to-

noise ratio. For standard spherical harmonics, the effect is stronger

for the more asymmetric SIO network geometry than for the more

balanced JPL network geometry (Fig. 5). In contrast, the new ba-

sis functions are much less sensitive to network geometry, showing

little difference between the JPL and SIO networks in terms of es-

timated and misfit degree amplitudes. Over the whole time-series,

use of basis functions derived from degrees up to 4 yields the best

comparison with the true degree amplitudes up to degree 10. For

the earlier JPL networks (weeks 900–999), a maximum degree of
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Figure 6. As Figure 5, but for the JPL network geometry with estimated

and misfit degree amplitudes computed over weeks 900–999 (left-hand side)

and weeks 1200–1299 (right-hand side).

3 or 4 is optimal, whereas for the later epochs (weeks 1200–1299)

the maximum degree could reasonably be increased to 5 or even 6

(Fig. 6). Similar time dependency is found for the SIO network,

although the level of misfit is generally higher. Hereafter we discuss

results based on the JPL network geometry only.

We also consider the spatial distribution of the rms difference

between synthetic and estimated loads at each point on the Earth’s

surface (Fig. 7). At maximum fitted degree 4, the new basis functions

are able to represent much of the signal over Eurasia and northern

America, although this is at the expense of poorer accuracy over

equatorial Africa and America, where there are fewer GPS sites.

In contrast, the standard spherical harmonic basis functions lead to

higher rms differences over the entire ocean and are unable to fit the

data as well. For maximum degree 6, this is even more pronounced:

although the new basis functions show localized instability in Africa,

America and Antarctica, standard spherical harmonics show insta-

bility that is even more geographically widespread.

5 A C C U R A C Y O F E S T I M AT E D

L O W- D E G R E E L OA D C O E F F I C I E N T S

GPS observations can add the most to our knowledge of the surface

mass loading at low degrees (Kusche & Schrama 2005), because

C© 2007 The Authors, GJI
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Figure 7. Spatial distribution of rms misfit between estimated surface loads and synthetic data, computed over the entire time-series, for estimates truncated at

degree 4 (left-hand side) and 6 (right-hand side). The bottom plots show the variability of the synthetic data. Numbers indicate the overall rms of the misfit/data

(in mm). The inversion data have JPL network geometry.

GRACE recovery of the gravity field is least sensitive at these long

wavelengths. The utility of GPS estimates of loading may therefore

lie in the accuracy of low-degree coefficients rather than the spatial

detail of the estimated load. Fig. 8 and Table 1 compare the ‘true’

(synthetic) and estimated coefficients for degree 1. For the degree-1

coefficients, the new basis functions give a consistently better fit to

the ‘true’ loading, for an equivalent number of estimated parame-

ters. For T C
11, standard spherical harmonics seem particularly unable

to fit the data; this presumably results from a combination of net-

work geometry and aliasing, with the vast majority of continents and

hence GPS sites being situated in the hemisphere centred on the pos-

itive X -axis. The new basis functions are significantly less affected

by this problem. T S
11 is slightly less extreme, but again the new ba-

sis functions are consistently better throughout the time-series and

this advantage becomes more pronounced during the latter half. T C
10

is estimated slightly better by spherical harmonics in the case of

degree-1 truncation, but at all higher truncation degrees the new

basis functions outperform standard spherical harmonics.

Both sets of basis functions are able to fit the low-degree zonal

coefficients T C
20 and T C

30 reasonably accurately (Fig. 9, Table 1),

although the new basis is slightly better in each case because it is

less prone to ‘overshoot’ at the seasonal extreme values. For T C
40,

the new basis functions are considerably more accurate at fitting

the synthetic data; this feature persists throughout the time-series

and demonstrates the ability of the new basis functions to track

moderate-degree features of the surface mass load even with rela-

tively sparse data geometry. A maximum degree of 3 or 4 (16 or

25 estimated parameters) gives the best overall fit to the low-degree

coefficients, over the whole time-series.

For comparison with previous published results which have

tended to concentrate on the seasonal fit to the data, we also compare

the seasonal periodic (annual and semi-annual harmonic) variation

in the estimated low-degree coefficients (Tables 2 and 3). We see

that the annual and semi-annual harmonic fit to T C
10 is reasonably

robust, regardless of the basis set and the maximum degree of fit.

The annual fit to T C
11 is very poor for standard spherical harmonics,

although the fit to the small semi-annual signal is fortuitously good.

For T S
11, the annual spherical harmonic fit is reasonably accurate in

amplitude but almost in quadrature to the ‘true’ signal; again the

semi-annual signal is small. For all of these coefficients and for T C
20,

the new basis functions are well able to track both the annual and

semi-annual signals.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have demonstrated that a physically reasonable set of basis func-

tions, derived from spherical harmonics, can be used to represent the

variation in surface mass load and associated displacements of the

solid Earth. Our representation achieves better fit to realistic syn-

thetic data than does a spherical harmonic estimate with the same

degree of freedom, is more robust to the biasing effect of network ge-

ometry, and is less prone to widespread oscillation in unconstrained

regions. Our results represent a lower bound on the uncertainty with

which the low-degree surface mass loads can be estimated using

GPS. Non-equilibrium ocean loads are not presently included in

our method, but they are small compared with the land load. If GPS

network geometry were favourable, it would be possible to include

a complementary set of mass-conserving basis functions, zeroed on

C© 2007 The Authors, GJI
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Figure 8. (a) Comparison between synthetic load coefficient T C
10 (heavy

line) and its estimate using standard spherical harmonic basis functions (grey

line, offset by –10) and the new basis functions (thin line, offset by +10).

JPL network geometry is used, with maximum degree of fit 4. Amplitude

units are mm of sea water equivalent to the surface load. (b, c) As Figure

8(a) but for coefficient T C
11 (b) and T S

11 (c).

Table 1. Root mean square goodness of fit between synthetic and estimated low-degree load coefficients, for varying maximum degrees

of estimation. Units are mm of sea water equivalent. Top figure is rms residual to estimate using new basis functions; lower figure is rms

residual to estimate using standard spherical harmonics. Numbers in parentheses represent model skill (the fitted percentage of variance

in that coefficient); an asterisk denotes negative skill (the residual variance is greater than that of the original synthetic coefficient).

Signal rms Max deg 1 Max deg 2 Max deg 3 Max deg 4

T C
10 9.16 8.14 (21) 5.92 (58) 5.94 (58) 5.35 (66)

7.09 (40) 6.05 (56) 5.65 (62) 5.85 (59)

T C
11 6.29 5.06 (35) 4.95 (38) 4.69 (44) 4.81 (42)

6.23 (2) 6.42 (∗) 6.37 (∗) 6.65 (∗)

T S
11 5.98 4.42 (45) 4.60 (41) 4.50 (43) 4.44 (45)

6.50 (∗) 6.12 (∗) 6.40 (∗) 6.28 (∗)

T C
20 11.34 5.07 (80) 4.82 (82) 5.07 (80)

7.26 (59) 5.74 (74) 6.30 (69)

T C
30 10.80 5.14 (77) 4.74 (81)

5.66 (73) 5.52 (74)

T C
40 6.92 4.56 (57)

6.07 (23)
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Figure 9. As Fig. 8 but for coefficients T C
20 (a), T C

30 (b) and T C
40 (c).

land, to model the dynamic ocean load at low degrees. The truncation

level of this complementary basis set could be chosen independently

to that of the land-oriented basis set, to allow for the lower density of

oceanic GPS sites. Systematic errors not accounted for in the formal

VCM of GPS solutions will add further biases to the estimates,
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Table 2. Annual harmonic terms fitted to the estimated low-degree load coefficients, for varying

maximum degrees of estimate, compared with those fitted to the synthetic data set. Units of ampli-

tude are mm of sea water equivalent; phases are in degrees. The upper figure is obtained using the

new basis functions; the lower figure is obtained using standard spherical harmonics.

Coeff Synthetic Max deg 1 Max deg 2 Max deg 3 Max deg 4

amp pha amp pha amp pha amp pha amp pha

T C
10 9.42 58 16.40 48 11.60 47 12.25 52 10.77 53

13.50 48 8.62 43 9.94 54 7.14 52

T C
11 6.91 25 8.55 33 6.69 32 6.42 43 5.61 41

0.96 75 0.43 98 0.75 95 0.48 162

T S
11 7.01 −24 6.13 −23 5.36 −38 5.05 −40 5.08 −36

4.95 49 3.45 46 3.51 53 2.90 53

T C
20 13.09 62 14.48 69 11.29 63 12.33 62

17.64 79 14.87 69 16.92 69

T C
30 12.88 132 12.94 126 11.92 133

15.31 137 14.72 135

T C
40 4.53 120 4.66 111

2.31 178

Table 3. As Table 2, but for semi-annual harmonic terms.

Coeff Synthetic Max deg 1 Max deg 2 Max deg 3 Max deg 4

amp pha amp pha amp pha amp pha amp pha

T C
10 3.94 −150 3.96 −161 4.08 −175 3.82 −174 3.74 −166

2.62 −150 1.88 −166 2.41 −160 1.67 −154

T C
11 0.33 165 0.18 −35 0.39 −54 0.36 −67 0.65 −89

0.29 −51 0.17 −34 0.21 −52 0.12 −29

T S
11 0.97 178 1.35 −168 1.12 −177 1.25 −178 1.32 −175

1.35 −143 1.03 −151 1.17 −155 0.79 −135

T C
20 2.81 −72 2.49 −84 2.30 −75 2.19 −77

3.25 −99 2.57 −83 2.58 −88

T C
30 2.82 −159 2.76 −156 3.14 −162

2.68 −142 4.00 −166

T C
40 4.31 −21 4.56 −31

6.36 -25

but these should reduce in future as the GPS measurement model

improves.

The basis functions directly incorporate the physics of reference

frame definition, conservation of mass, and equilibrium ocean re-

sponse to the land load, whilst parametrizing the land load in a way

that is independent of any hydrological or climate model. Previous

inversion schemes (Wu et al. 2003, 2006; Kusche & Schrama 2005)

have incorporated information from models or other satellite data,

either directly or via an oceanic smoothing constraint. Our method

allows the use of GPS data alone to estimate the low-degree coeffi-

cients of the surface mass load. GRACE data are unable to recover

the degree-1 load coefficients, and at degrees 2–4, GPS data are ex-

pected to contribute the majority of the data strength in a combined

GPS–GRACE inversion (Kusche & Schrama 2005). GPS data have

to date only been demonstrated to recover the seasonal and interan-

nual variations in the surface mass load, not the secular variations,

because of the difficulty of isolating the effects of the latter from

plate tectonic and post-glacial rebound motions. However, we expect

future improvements in the modelling of glacio-isostatic adjustment

to enable the use of GPS to estimate secular changes in surface mass

loading.
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