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[1] We develop a spectral inversion method for mass redistribution on the Earth’s surface
given geodetic measurements of the solid Earth’s geometrical shape, using the elastic load
Love numbers. First, spectral coefficients are geodetically estimated to some degree.
Spatial inversion then finds the continental surface mass distribution that would force
geographic variations in relative sea level such that it is self-consistent with an
equipotential top surface and the deformed ocean bottom surface and such that the total
(ocean plus continental mass) load has the same estimated spectral coefficients. Applying
this theory, we calculate the contribution of seasonal interhemispheric (degree 1) mass
transfer to variation in global mean sea level and nonsteric static ocean topography, using
published GPS results for seasonal degree-1 surface loading from the global IGS network.
Our inversion yields ocean-continent mass exchange with annual amplitude (2.92 ± 0.14)�
1015 kg and maximum ocean mass on 25 August ±3 days. After correction for the annual
variation in global mean vertical deformation of the ocean floor (0.4 mm amplitude), we
find geocentric sea level has an amplitude of 7.6 ± 0.4 mm, consistent with TOPEX-
Poseidon results (minus steric effects). The seasonal variation in sea level at a point
strongly depends on location ranging from 3 to 19 mm, the largest being around
Antarctica in mid-August. Seasonal gradients in static topography have amplitudes of up
to 10 mm over 5000 km, which may be misinterpreted as dynamic topography. Peak
continental loads occur at high latitudes in late winter at the water-equivalent level of
100–200 mm. INDEX TERMS: 1214 Geodesy and Gravity: Geopotential theory and determination;

1223 Geodesy and Gravity: Ocean/Earth/atmosphere interactions (3339); 1655 Global Change: Water cycles

(1836); 4203 Oceanography: General: Analytical modeling; 4227 Oceanography: General: Diurnal, seasonal,

and annual cycles; KEYWORDS: Earth’s shape, mass redistribution, GPS, Love number, geoid, sea level
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1. Introduction

[2] We develop a methodology to invert for the redis-
tribution of fluids on the Earth’s surface given precise
global geodetic measurements of Earth’s geometrical
shape. Specifically we develop (1) inversion of geodetic
station coordinates for a spherical harmonic representation
of Earth’s shape; (2) inversion of Earth’s shape for surface
mass distribution; (3) inversion for a specific surface mass
distribution consistent with static equilibrium theory on
the ocean’s passive response to mass redistribution on
land. Finally, we demonstrate the developed methodology

in the simplest possible case, using a published empirical
seasonal model of degree-1 coefficients, and we assess the
feasibility of higher resolution inversion. Figure 1
presents an overview of the overall scheme, where here
the focus is on inversion for the surface load using station
positions.
[3] This development is motivated by recent advances in

monitoring the changing shape of the Earth. For example,
consider the global polyhedron formed by the current �250
Global Positioning System (GPS) stations of the Interna-
tional GPS Service. A time series of estimated polyhedra
can be estimated every week [Davies and Blewitt, 2000],
which can then be converted into low-degree spherical
harmonic coefficients describing the shape of the Earth as
a function of time [Blewitt et al., 2001]. Earlier work by
Plag et al. [1996] suggested the possibility of using space
geodetic measurements together with a ‘‘known’’ surface
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mass distribution to then invert for Earth’s mechanical
properties. However, more recent evidence suggests that
uncertainties in the surface load distribution are generally
far more significant than differences between Earth me-
chanical models [van Dam et al., 1997, 2001; Tamisiea et
al., 2002]. Hence the focus of this paper is the opposite
problem, that is, the estimation of consistent load distribu-
tions, given known mechanical properties of the Earth.
Using the theory developed here, we can in effect use
geodetic measurements of land deformation to ‘‘weigh’’
separately the loading of continental water and the passive
response of sea level. The method also produces estimates
of variations in the geoid height and the ocean’s static
topography, which have application to the interpretation of
satellite altimeter data in terms of the ocean’s dynamic
topography. Expressions are also obtained to estimate

change in global mean sea level and the mass of water
exchanged between the oceans and the continents.
[4] We apply the following development to elastic load-

ing theory and equilibrium tidal theory for the investigation
of mass redistribution over timescales of weeks to decades.
At shorter time periods, ocean currents and tidal friction
play a dominant role; at longer time periods, mantle
viscosity effects start to dominate. As elastic loading is
the only deformation process considered here, it is implic-
itly assumed that geodetic coordinates have been calibrated
for other types of solid Earth deformations of such as luni-
solar tidal deformation, secular motion due to plate tectonics
and postglacial rebound, and transient motions due to the
earthquake cycle. It is also extremely important to calibrate
for GPS station configuration changes, especially antennas.

2. Spectral Inversion for Earth’s Changing Shape

[5] Consider a network of geodetic stations located at
geographical positions �i (latitude ji, longitude li for i =
1,. . .,s) that provide a time series of station coordinate
displacements (einiui), corresponding to local east, north,
and up in a global terrestrial reference frame [Davies and
Blewitt, 2000]. As a first step, we develop a purely kine-
matic model of these vector displacements as a spectral
expansion of appropriate basis functions over the Earth’s
surface, independent of specific loading models. This leads
to expressions for least squares estimates of the empirical
spectral parameters. This step is therefore independent of
the dynamics responsible for the deformation (except for
consideration of appropriate spatial resolution).

2.1. Kinematic Spectral Displacement Model

[6] Consider a vector surface displacement function on a
sphere decomposed into lateral and height components:

D �ð Þ ¼ E �ð ÞL̂þ N �ð Þ Ĵþ H �ð Þr̂ ð1Þ

where ðL̂; Ĵ; r̂Þ are unit vectors forming a right-handed
topocentric coordinate basis pointing respectively in direc-
tions east, north, and up. It can be shown [Grafarend, 1986]
that the lateral component of the displacement function can
also be decomposed into poloidal (or ‘‘spheroidal’’) and
toroidal components, so we can write

D �ð Þ ¼ rY �ð Þ þ r� � �ð Þr̂ð Þ þ H �ð Þr̂ ð2Þ

where C(�) is the scalar poloidal surface function, �(�) is
the scalar toroidal surface function, and the surface gradient
operator is defined by

r ¼ L̂ 1= cosjð Þ@l þ Ĵ@j ð3Þ

Invoking the Love-Shida hypothesis [Love, 1909] that no
toroidal displacements are forced by surface-normal load-
ing, so �(�) = 0, we can express the east and north
functions in terms of the poloidal component:

E �ð Þ ¼ 1= cosjð Þ@lY �ð Þ

N �ð Þ ¼ @jY �ð Þ
ð4Þ

Figure 1. The basic elements of our analytical integrated
loading model, building on a figure from Blewitt [2003],
which incorporated self-consistency of the reference frame
and loading dynamics. Here we incorporate self-consistency
in the static, passive response of ocean loading. Phenomena
are in ovals, measurement types are in rectangles, and
physical principles are attached to the connecting arrows.
The arrows indicate the direction leading toward the
computation of measurement models, which this paper
inverts for the case of measured station positions. Although
the diagram suggests an iterative forward modeling solution
[e.g., Wahr, 1982], we develop a closed-form solution that
allows for true inversion.
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Let us model the height and poloidal functions as spherical
harmonic expansions truncated to degree n:

H �ð Þ ¼
X�n
n¼1

Xn
m¼0

XC;Sf g

�

H�
nmY

�
nm �ð Þ

Y �ð Þ ¼
X�n
n¼1

Xn
m¼0

XC;Sf g

�

Y�
nmY

�
nm �ð Þ

ð5Þ

where our spherical harmonics convention is given in
Appendix A and truncation issues are discussed later. We
define the summation over �2{C, S} where C and S
identify sine and cosine components of the expansion. From
equations (4) and (5), the east and north functions are
therefore modeled by [Grafarend, 1986, p. 340]

E �ð Þ ¼
X�n
n¼1

Xn
m¼0

XC;Sf g

�

Y�
nm

@lY
�
nm �ð Þ

cosj

N �ð Þ ¼
X�n
n¼1

Xn
m¼0

XC;Sf g

�

Y�
nm@jY

�
nm �ð Þ

ð6Þ

2.2. Degree-0 Considerations

[7] The summation for the height function begins at n = 1
because a nonzero H00

C Y00
C implies an average change in the

Earth’s radius, which is theoretically forbidden in a spheri-
cally symmetric Earth model where the total surface mass is
constant. The summation for the poloidal function begins at
n = 1 simply because Y00

C = 1 and therefore its surface
gradient is zero. Hence the degree-0 coefficient is arbitrary
as it cannot affect the lateral velocity field. We choose to fix
the gauge of the scalar field Y(�) by setting Y00

C = 0.

2.3. Degree-1 Considerations

[8] The degree-1 component of displacement is a subtle
problem [Farrell, 1972; Blewitt, 2003] and should not
mistakenly be represented as a pure translation. Further-
more, we must carefully consider degree-1 deformation
because there are only three (not six) independent compo-
nents of the displacement field. Let us start by writing the
degree-1 component of the vector displacement as a func-
tion of the six degree-1 parameters from equations (1), (5),
and (6):

D1 �ð Þ

¼
X1
m¼0

XC;Sf g

�

L̂Y�
1m

@lY
�
1m �ð Þ

cosj
þ ĴY�

1m@jY
�
1m �ð Þ þ r̂H�

1mY
�
1m �ð Þ

��
¼L̂ �YC

11 sinlþYS
11 cosl

� �
þ Ĵ �YC

11 sinj cosl
�

� YS
11 sinj sinlþYC

10 cosj
�

þ r̂ HC
11 cosj cosl

�
þ HS

11 cosj sinlþ HC
10 sinj

�
ð7Þ

This is equivalent to the vector formula:

D1 �ð Þ¼L̂ Y1:L̂
� �

þ Ĵ Y1:Ĵð Þ þ r̂ H1:r̂ð Þ¼ Y1 þ r̂ H1 �Y1ð Þ:r̂½ 

ð8Þ

where we define the spatially constant vectors Y1 =
(Y11

C ,Y11
S ,Y10

C ) andH1 = (H11
C ,H11

S , H10
C ). The same degree-1

deformation, as observed in a reference frame that has an

origin displaced by vector �r = (�x, �y, �z) with respect
to the original frame, will have surface displacements
(denoted with primes)

D0
1 �ð Þ ¼ D1 �ð Þ ��r ¼ Y0

1 þ r̂ H0
1 �Y0

1

� �
:r̂

� �
ð9Þ

where

Y0
1 ¼ Y1 ��r

H0
1 ¼ H1 ��r

ð10Þ

Clearly, the degree-1 vector displacement function depends
on the arbitrary choice of reference frame origin.
[9] Equation (10) implies that there exist special reference

frames in which either the horizontal displacements or the
vertical displacements are zero for degree-1 deformation
[Blewitt et al., 2001]. These are the CL (center of lateral
figure) and CH (center of height figure) frames, respectively
[Blewitt, 2003]. That the vertical degree-1 displacements
can be made zero by a simple translation proves that the
model Earth retains a shape of constant radius under a
degree-1 deformation, and hence retains a perfect spherical
shape. However, if H1

0 = 0, in generalY1
0 =Y1 � H1 6¼ 0; so

the surface is strained, as detected by GPS [Blewitt et al.,
2001] and by very long baseline interferometry [Lavallée
and Blewitt, 2002].
[10] In GPS geodesy, station coordinate time series are in

practice often published in an effective center of figure (CF)
frame [Dong et al., 1997], defined by no net translation of
the Earth’s surface, and realized through a rigid-body
transformation at every epoch. In the CF frame, Blewitt et
al. [2001, Figure 2] show maximum seasonal variations in
the degree-1 height function of 3 mm. Integrating equation
(8) over the sphere, the no net translation condition is
satisfied when

Y1 ¼ � 1

2
H1 ð11Þ

which can be derived by substituting the identity r̂ = (Y11
C,

Y11
S , Y10

C ) and using equation (A4). Hence degree 1 is a
special case in that there are only 3 (not 6) free parameters.
Combining equations (1), (7), and (11), the degree-1 east,
north and height surface functions can be written

E1 �ð Þ
N1 �ð Þ
H1 �ð Þ

0@ 1A ¼
�1

2
0 0

0 �1

2
0

0 0 1

0@ 1AG �ð Þ
HC

11

HS
11

HC
10

0@ 1A ð12Þ

where we define

G �ð Þ ¼
� sinl cosl 0

� sinj cosl � sinj sinl cosj
cosj cosl cosj sinl sinj

0@ 1A ð13Þ

which can be identified as the geocentric to topocentric
coordinate rotation matrix. So we can write the degree-1
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geocentric coordinate displacements in the CF frame as the
matrix equation:

D1 �ð Þ ¼ GT �ð Þdiag �1

2
;�1

2
;þ1

h i
�G �ð ÞH ð14Þ

[11] Equation (14) applies quite generally to nontoroidal
deformations. For example, it would not apply to plate
tectonics, but it would apply to loading models that satisfy
the Love-Shida hypothesis. Our approach cleanly separates
the kinematic spectral inversion problem from static/dy-
namic problems, which require assumptions on the spatial
and temporal variation of Earth’s mechanical properties.

2.4. Inversion Model

[12] The observation equations for a set of estimated
station displacement coordinates bi = (ei ni ui) for stations
i = 1,. . ., s at geographic locations �i at a given epoch are
given by the matrix equation:

b ¼ Axþ v ð15Þ

where b is a column matrix of the observed displacements
for the entire network

b ¼ b1 b2 � � �bsð ÞT ð16Þ

x is a column matrix of unknown parameters, which are the
spectral coefficients of the height and poloidal surface
functions

x ¼ HC
11H

S
11H

C
10

��HC
20 � � �HS

nn

��YC
20 � � �YS

nn

� �T ð17Þ

Note that terms Y1m
� are not included as free parameters due

to the no net translation constraint, equation (11). A is the
matrix of partial derivatives, which has the following block
structure

and v is column matrix of station coordinate residuals.
[13] Let us assume the stochastic model

E vvT
� �

¼ C ð19Þ

where E is the expectation operator, and C is the covariance
matrix associated with the estimated station coordinate
displacements. The weighted least squares solution for the
spectral coefficients is

x̂ ¼ CxA
TC�1b

Cx ¼ ATC�1A
� ��1

ð20Þ

where Cx is the formal covariance matrix of the estimated
spectral coefficients. Given the estimated spectral coeffi-
cients Ŷ�

nm; Ĥ
�
nm, and matrix Cx, it is then straightforward to

construct the estimated surface vector displacements, and
propagate the errors to compute the formal uncertainty in
modeled displacement at any location on the sphere.

2.5. Truncation Considerations

[14] For a truncation at degree n, there are n(n + 2)
spectral coefficients Hnm

� . It is therefore technically possible
to estimate coefficients up to degree n with an absolute
minimum of s = n(n + 2) stations (for a nondegenerate
network configuration). So in principle a 100-station well-
distributed network can be used to estimate spectral coef-
ficients up to degree 9.
[15] In practice, truncation well below this technical limit

can have its advantages as an effective spatial filter of errors
in the station heights. Truncation even to a very low degree
might be justified on the grounds that spherical harmonic
functions are orthogonal over the entire Earth’s surface, and
so are effectively orthogonal for a well-distributed network.
However, some level of bias will be present for actual
network configurations, which could be assessed by covari-

A ¼

0 � � � 0
@lY

C
20ð�1Þ

cosj1

� � � @lY
S
�n�nð�1Þ

cosj1

�1

2
0 0

0 �1

2
0

0 0 1

0@ 1AGð�1Þ 0 � � � 0 @jY
C
20ð�1Þ � � � @jY

S
�n�nð�1Þ

YC
20ð�1Þ � � � YS

�n�nð�1Þ 0 � � � 0

..

. ..
. ..

.

0 � � � 0
@lY

C
20ð�sÞ

cosjs

� � � @lY
S
�n�nð�sÞ

cosjs

�1

2
0 0

0 �1

2
0

0 0 1

0@ 1AGð�sÞ 0 � � � 0 @jY
C
20ð�sÞ � � � @jY

S
�n�nð�sÞ

YC
20ð�sÞ � � � YS

�n�nð�sÞ 0 � � � 0

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ð18Þ
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ance analysis. In the case of low-degree truncation, high-
degree signal components would tend to be absorbed into the
station displacement residuals. Conversely, in the case of
high-degree truncation, the higher-degree estimates would
tend to absorb some of the station position errors. It may be
effective to estimate as many degrees as technically possible,
but only interpret the results up to a degree less than n; such
considerations would need to be investigated.
[16] In principle it should be possible to assess the

precision of the spectral coefficients by comparing indepen-
dent estimates of the load inversion (described below) that
use only Hnm

� or Cnm
� , and use this to guide the selection of

truncation degree n, or to improve the stochastic model. The
selection of n̂ is not discussed further here, except to note
that a standard F test might be used to assess whether
adding an extra degree to the model produces a statistically
significant decrease in the residual variance.

3. Spectral Inversion for Mass Distribution

3.1. Surface Mass Redistribution

[17] Consider a spherical solid Earth of radius a, plus
surface mass that is free to redistribute in a thin surface layer
(�a). Without loss of generality, we can simplify the
equations by expressing the total surface density of this
layer (irrespective of its composition) as the equivalent
height of a column of seawater T(�). That is, the surface
mass per unit area everywhere is by definition rST(�) where
the density of seawater is taken to be rS = 1025 kg m�3.
[18] On land, T(�) would include both the local variation

in atmospheric pressure and continental water. Over the
oceans, in the absence of steric effects and atmospheric
interactions, T(�) can be considered the value of static sea
level. It depends on the application as to whether the effect
of atmospheric pressure on sea level is an important
consideration. For example, under the inverse barometer
assumption, a change in atmospheric mass distribution
tends to produce an opposite change in oceanic mass
distribution, thus over the oceans, geographic variations in
T(�) are not strongly sensitive to the atmospheric compo-
nent (although T(�) would include the variation in atmo-
spheric pressure averaged over the oceans). On the other

hand, if the application requires that estimates of T(�) be
geometrically interpreted as sea level, then such sea level
predictions would be strongly sensitive to atmospheric
pressure (except for global mean sea level, which is
unaffected). Van Dam et al. [1997] show how to calculate
the effect of atmospheric pressure on sea level. In this paper,
we simplify this aspect of the discussion by assuming that
the application does not require us to consider the atmo-
spheric component of T(�), and so we loosely refer to T(�)
over the ocean as sea level, and over the land as continental
water. This does not invalidate the equations, assuming that
the variations in the total mass of the atmosphere (due to
water vapor) are negligible [Trenberth, 1981].

3.2. Static Spectral Displacement Model

[19] Let us consider the total mass distribution function as
a spherical harmonic expansion:

T �ð Þ ¼
X1
n¼1

Xn
m¼0

XC;Sf g

�

T�
nmY

�
nm �ð Þ ð21Þ

The summation begins at degree n = 1 because we assume
that, although the surface load can be redistributed, its total
mass is conserved.
[20] Such a surface load changes the gravitational poten-

tial on the surface of a rigid, spherical Earth by an amount
[Farrell, 1972]:

VT �ð Þ ¼
X1
n¼1

Xn
m¼0

XC;Sf g

�

4pGa
2nþ 1ð Þ rST

�
nmY

�
nm �ð Þ

¼
X1
n¼1

Xn
m¼0

XC;Sf g

�

3grS
2nþ 1ð ÞrE

T�
nmY

�
nm �ð Þ ð22Þ

where G is the gravitational constant, the Earth’s radius a =
6371 km (which equates the volume and surface area of our
model sphere to that of the conventional reference
ellipsoid), and g is acceleration due to gravity. Assuming
the Earth’s mass is 5.973 � 1024 kg, the mean density of the
Earth is rE = 5514 kg m�3. For a spherically symmetric
elastic Earth model, the load deforms the Earth and changes

Table 1. Load Love Numbers and Combinations to Degree 12a

Degree
n

Surface
Height
hn

0

Geoid
Height
1 + kn

0

Surface
Lateral
ln
0

Surface Lateral:
Surface Height

l0n
h0n

��� ���
Surface Height:
Load Thickness

3rS h
0
n

2nþ1ð ÞrE

Geoid Height:
Load Thickness

3rS 1þk 0nð Þ
2nþ1ð ÞrE

Sea Level:
Load Thickness

3rS 1þk 0n�h0nð Þ
2nþ1ð ÞrE

1b �0.269 1.021 0.134 0.500 �0.050 0.190 0.240
2 �1.001 0.693 0.030 0.029 �0.112 0.077 0.189
3 �1.052 0.805 0.074 0.071 �0.084 0.064 0.148
4 �1.053 0.868 0.062 0.059 �0.065 0.054 0.119
5 �1.088 0.897 0.049 0.045 �0.055 0.045 0.101
6 �1.147 0.911 0.041 0.036 �0.049 0.039 0.088
7 �1.224 0.918 0.037 0.030 �0.046 0.034 0.080
8 �1.291 0.925 0.034 0.026 �0.042 0.030 0.073
9 �1.366 0.928 0.032 0.023 �0.040 0.027 0.067
10 �1.433 0.932 0.030 0.021 �0.038 0.025 0.063
11 �1.508 0.934 0.030 0.020 �0.037 0.023 0.059
12 �1.576 0.936 0.029 0.018 �0.035 0.021 0.056
aColumns 2–4 are computed from Farrell [1972] (interpolated for degrees 7, 9, 11, and 12). Load thickness is defined as the height of a column of

seawater, specific density 1.025.
bFrame-dependent degree-1 numbers computed in center of figure (CF) frame [Blewitt et al., 2001], except for sea level:load thickness, which is frame-

invariant. Degree-1 numbers should be transformed into the isomorphic frame adopted by a specific investigation [Blewitt, 2003].
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its self-gravitation, thus creating an additional potential on
the (original) reference surface

VK �ð Þ ¼
X1
n¼1

k 0n VT �ð Þ½ 
n

¼
X1
n¼1

Xn
m¼0

XC;Sf g

�

k 0n
3grS

2nþ 1ð ÞrE
T�
nmY

�
nm �ð Þ ð23Þ

where kn
0 is the gravitational static degree n load Love

number [Farrell, 1972].
[21] Let us carefully define ‘‘the geoid’’ as the equipoten-

tial surface with the same potential as that of the sea surface
on the undeformed model Earth. That is, by our definition,
the geoid is allowed to deform due to redistribution of mass,
but it must retain its same potential. For future reference in
our model of sea level, the height of the geoid above the
reference surface (the initial geoid) is given everywhere by

N �ð Þ ¼ 1

g
VT �ð Þ þ VK �ð Þ½ 


¼
X1
n¼1

Xn
m¼0

XC;Sf g

�

1þ k 0n
� � 3rS

2nþ 1ð ÞrE
T�
nmY

�
nm �ð Þ ð24Þ

Table 1 shows the geoid height load Love number (1 + kn
0)

along with other Love numbers and useful combinations to
degree 12, derived from Farrell [1972]. For example, the
coefficient in equation (24) is shown in Table 1 as ratio
‘‘geoid height: load thickness.’’
[22] In this paper, we have used Love numbers from

Farrell [1972], which refer to a symmetric, no-rotating
elastic, isotropic (SNREI) Earth model based on the Guten-
berg-Bullen A model. Farrell’s Love numbers are widely
used in the geodetic community, for example, in elastic
Green’s function models of hydrological and atmospheric
loading [van Dam et al., 2001]. The preliminary reference
Earth model PREM [Dziewonski and Anderson, 1981] yields
low-degree load Love numbers almost identical to Farrell’s
[Lambeck, 1988; Grafarend et al., 1997]. More general
classes of Earth model have been discussed by Plag et al.
[1996]. Mitrovica et al. [1994] and Blewitt [2003] have
further discussions on model and reference frame consid-
erations. For the inversion of seasonal loading, mechanical
model considerations are relatively minor compared to
limitations of the load model and its spatial resolution.
[23] Using the load Love number formalism the height

spectral coefficients can be derived by

H �ð Þ ¼
X1
n¼1

h0n
g

VT �ð Þ½ 
n¼
X1
n¼1

Xn
m¼0

XC;Sf g

�

h0n
3rS

2nþ 1ð ÞrE
T�
nmY

�
nm �ð Þ

H�
nm ¼ h0n

3rS
2nþ 1ð ÞrE

T�
nm ð25Þ

where hn
0 are the height load Love numbers. The term (2n + 1)

in the denominator of equation (25), coupled with the
knowledge that hn

0 asymptotically approaches a constant as n
! 1 (the elastic half-space Boussinesq problem [Farrell,
1972]), indicates that mass distribution coefficients Tnm

�

become increasingly sensitive to errors in the height
coefficients for increasing degree n. This underscores our
suggesting a conservatively lowchoice of truncation degreen.
[24] The poloidal spectral coefficients are derived by first

expressing the poloidal component of lateral displacement

in equation (2) as a function of the loading potential
according to load Love number theory:

rY �ð Þ ¼
X1
n¼1

l0n
g
r VT �ð Þ½ 
n

Y �ð Þ ¼
X1
n¼1

l0n
g

VT �ð Þ½ 
n þ YC
00

¼
X1
n¼1

Xn
m¼0

XC;Sf g

�

l0n
3rS

2nþ 1ð ÞrE
T�
nmY

�
nm �ð Þ

Y�
nm ¼ l0n

3rS
2nþ 1ð ÞrE

T�
nm

where ln
0 are the lateral load Love numbers, and where (as

before) we set the integration constant Y0
c = 0 without

affecting the actual displacements in equation (2).
[25] Table 1 gives the ratio ‘‘surface height: load thick-

ness’’ up to degree 12. It also gives the ratio ‘‘surface lateral:
surface height,’’ which is the ratio of lateral to height load
Love numbers. For the special case of degree 1 in the CF
frame, equation (11) implies l1

0/h1
0 = �1/2 for all spherically

symmetric models that obey the Love-Shida hypothesis.
With the exception of degree 1, the relative contribution of
horizontal data suffers from the low surface lateral to surface
height displacement ratio, which for degrees 2 to 9 ranges
from 0.02 to 0.07 (peaking at degree 3). However, the
simultaneous inversion of poloidal data can be justified
because the ratio of horizontal to vertical variance is typi-
cally small for globally referenced coordinates (�0.1)
[Davies and Blewitt, 2000]; thus the relative information
content of horizontal displacements can be significant,
despite the low-magnitude Love numbers [Mitrovica et al.,
1994].

3.3. Inversion Model

[26] From the above development, the spectral coeffi-
cients for the observed surface displacement functions can
be modeled

x̂ ¼ Byþ vx ð27Þ

where x̂, given by equation (20), contains estimated spectral
coefficients of displacement according to the structure of
equation (17); y is a column matrix of unknown parameters,
which are the spectral coefficients of the mass distribution
function

y ¼ TC
11 TS

11 TC
10 jTC

20 � � � TS
�n�n

� �T ð28Þ

B is the matrix of partial derivatives which has a diagonal
block structure

B ¼ 3rS
2nþ 1ð ÞrE

h01I3 0 � � � 0

0 h02I5
..
. . .

.

0 h0�nI2�nþ1

0 l02I5
..
. . .

.

0 l0�nI2�nþ1

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
ð29Þ

(26)
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and vx is column matrix of displacement coefficient
residuals.
[27] Let us assume the stochastic model

E vxv
T
x

� �
¼ Cx ð30Þ

where Cx is given by equation (20). The weighted least
squares solution for the mass distribution spectral coeffi-
cients is

ŷ ¼ CyB
TC�1

x x̂

Cy ¼ BTC�1
x B

� ��1
ð31Þ

where CY is the formal covariance matrix of the estimated
mass distribution coefficients.
[28] The two-step estimation process prescribed by equa-

tions (20) and (31) would in principle give an identical
solution as a one-step process. It is convenient to break the
solution into two steps because, as previously discussed, the
first step is independent of load Love numbers derived from
specific models. More specifically, it is useful to assess from
the first step how well the truncated spectral model fits the
original station displacement data, and to reject outliers or
improve the stochastic model using formal statistical pro-
cedures that do not rely on the validity of specific loading
models. The second step might be applied separately
multiple times using different sets of load Love numbers
from various models, or to assess, for example, how
consistent are the poloidal and height spectral coefficients.
In principle the mass distribution spectral coefficients can
be estimated using only height spectral coefficients or only
poloidal coefficients, thus providing an alternative assess-
ment of the stochastic model.

3.4. Ocean-Landmass Exchange
and Global Mean Sea Level

[29] One useful result that can be derived immediately is
the total mass exchanged between the oceans and the
continents. The effect of ocean-landmass exchange on
change in global mean sea level is

�S ¼

Z Z
ocean

T �ð Þd�

Z Z
ocean

d�
¼
X1
n¼1

Xn
m¼0

XC;Sf g

�

C�
nmT

�
nm

CC
00�

2
nm

ð32Þ

where Cnm
� are spectral coefficients of the ocean function

C(�), which takes the value 1 over the oceans and 0 on land
[Munk and MacDonald, 1960], and the normalization
coefficient �nm is defined in Appendix A. The ocean
function coefficients can be computed to some finite degree
using coastline data [Balmino et al., 1973] according to

C�
nm ¼ �2

nm

4p

Z Z
ocean

Y�
nmd� ð33Þ

[30] Table 2 shows unnormalized ocean function coeffi-
cients up to degree 4, consistent with our convention in
Appendix A. Chao and O’Connor [1988] urge us to be
careful due to pervasive ‘‘errors which arose from normal-
ization conventions’’ in the literature. The coefficients from
Balmino et al. [1973] (later reproduced by Lambeck [1980])
were chosen because two independent analysis groups using
different conventions corroborated the values. Published
coefficients by Munk and MacDonald [1960] have been
questioned by Balmino et al. [1973], and appear to us to
contain errors associated with inconsistent application of
normalization conventions. The coefficients by Dickman
[1989], while they may derive from more accurate satellite
data, appear to be fundamentally inconsistent with the ocean
function’s idempotent nature, and higher order coefficients
appear to be systematically too small (by orders of magni-
tude), which again suggests normalization problems.
[31] Using equations (32) and (33) the mass taken from

the ocean and deposited on land is

�M ¼ �rS�Sa
2

Z Z
ocean

d� ¼ �4pa2rS
X1
n¼1

Xn
m¼0

XC;Sf g

�

C�
nmT

�
nm

�2
nm

ð34Þ

Global mean sea level is only sensitive to low-degree mass
redistribution (because it involves the square of spectral
coefficients that obey a naturally decreasing power law) and
so truncation of equations (32) and (34) is a relatively minor
issue.

4. Spatial Inversion for Mass Distribution

4.1. Model-Free Inversion

[32] Without any a priori knowledge of the dynamics of
mass redistribution, a naı̈ve model-free solution to the
spatial distribution of mass is given by equation (21)

T̂ �ð Þ ¼
X�n
n¼1

Xn
m¼0

XC;Sf g

�

T̂�
nmY

�
nm �ð Þ ð35Þ

where estimates for the mass distribution coefficients are
given by equation (31). Ideally, if we knew all the values of
the infinite number of total mass distribution coefficients
Tnm

� then sea level S(�) would be given straightforwardly by
using the ocean function:

S �ð Þ ¼ C �ð ÞT �ð Þ ¼ C �ð Þ
X1
n¼1

Xn
m¼0

XC;Sf g

�

T�
nmY

�
nm �ð Þ ð36Þ

Table 2. Ocean Function Spectral Coefficients Used in This

Analysisa

Coefficient
Cnm

�
Degree 0

C0m
�

Degree 1
C1m

�
Degree 2

C2m
�

Degree 3
C3m

�
Degree 4

C4m
�

Cn0
C 0.69700 �0.21824 �0.13416 0.11906 �0.07200

Cn1
C �0.18706 �0.05164 0.04753 0.03415

Cn1
S �0.09699 �0.06584 �0.03456 0.02846

Cn2
C 0.02582 0.02391 0.02012

Cn2
S 0.00129 �0.03040 �0.00470

Cn3
C �0.00223 �0.00317

Cn3
S �0.01241 0.00030

Cn4
C 0.00030

Cn4
S �0.00213

aNormalization removed from coefficients of Balmino et al. [1973].
Convention for unnormalized coefficients in Appendix A.
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Similarly, the continental mass distribution L(�) would be
given by

L �ð Þ ¼ 1� C �ð Þ½ 
T �ð Þ ¼ 1� C �ð Þ½ 

X1
n¼1

Xn
m¼0

XC;Sf g

�

T�
nmY

�
nm �ð Þ

ð37Þ

so that

T �ð Þ ¼ S �ð Þ þ L �ð Þ ð38Þ

(where L(�) refers to the equivalent height of a column of
seawater on land).
[33] A problem with the above approach is that the

coefficients T̂ nm
� are in practice only given to a finite degree

n so the real discontinuity of mass distribution at the
coastlines is poorly represented by a smooth function. A
more serious objection is that a model of sea level formed
by truncating equation (36) will not even approximately
conform to an equipotential surface, and so is physically
unreasonable. Next we shall address this by incorporating
the physics of how the oceans respond passively to changes
in the Earth’s surface potential from mass redistribution.

4.2. Relative Sea Level in Static Equilibrium

[34] In hydrostatic equilibrium, the upper surface of the
ocean adopts an equipotential surface. Equilibrium tidal
theory neglects ocean currents associated with any change
in sea level, and so is presumed to be valid for periods
longer than the time constant associated with tidal friction,
[Proudman, 1960; Munk and MacDonald, 1960] and there-
fore should be applicable to fortnightly periods and beyond
[Agnew and Farrell, 1978]. For our intended application of
the theory we shall now develop, we are mainly concerned
with the forcing of sea level by the seasonal to decadal-scale
loading due to continental water storage, and so we assume
the static equilibrium model.
[35] Let us define ‘‘relative sea level’’ as the column

height of the ocean as measured from the solid Earth surface
at the ocean’s bottom to the ocean’s upper surface. The
change in relative sea level from an initial equilibrium state
to a new equilibrium state can be expressed, to within a
constant, as the change in height of the geoid relative to the
underlying model of the Earth’s surface. In its most general
form [Dahlen, 1976], relative sea level S(�) in static
equilibrium is the following function of geographical posi-
tion �

S �ð Þ ¼ C �ð Þ N �ð Þ � H �ð Þ þ�V=gð Þ ð39Þ

where the geoid height N(�) is given by equation (24); and
C(�)H(�) is the height of the deformed ocean basins, given
by equation (25). The constant �V/g is required because,
although the sea surface will relax to an equipotential
surface, it will generally have a different potential to its
initial potential, depending on the total oceanic mass and the
irregular ocean-land distribution [Dahlen, 1976]. Therefore
�V represents the geopotential of the sea surface relative to
the geoid’s potential, and �V/g represents the height of the
sea surface above the deformed geoid.

[36] Inserting equations (24) and (25) into (39) gives us
‘‘the sea level equation’’ appropriate to our problem:

S �ð Þ ¼ C �ð Þ
X1
n¼1

Xn
m¼0

XC;Sf g

�

3 1þ k 0n � h0n
� �

rS
2nþ 1ð ÞrE

T�
nmY

�
nm �ð Þ þ�V

g

" #
ð40Þ

The total load coefficients Tnm
� themselves include a

contribution from sea level and so traditionally equations
similar to (40) have been either inverted [Dahlen, 1976] or
solved iteratively [Wahr, 1982; Mitrovica et al., 1994],
given an applied nonoceanic load (or tidal potential).
[37] Indeed such a calculation would be appropriate if we

were to compute how the ocean’s passive response modifies
the effect of a given land load on the Earth’s shape
(something that is generally not accounted for in current
loading models). However, in our application we have
direct access to estimates T̂ nm

�, and so have no need to solve
the sea level equation in the same sense. Our estimate for
sea level at a given location can therefore be written

Ŝ �ð Þ ¼ C �ð ÞeS �ð Þ ð41Þ

where we define the quasi-spectral sea level function

~S �ð Þ ¼
X�n
n¼1

Xn
m¼0

XC;Sf g

�

3 1þ k 0n � h0n
� �

rS
2nþ 1ð ÞrE

T̂�
nmY

�
nm �ð Þ þ�V

g
ð42Þ

[38] ‘‘Quasi-spectral’’ implies that the coefficients of this
function apply over the oceanic spatial domain rather than
the global spatial domain, and it indicates the coefficients
are intended for spatial interpretation through equation (41);
expressions for the global spectral coefficients are derived
later. The coefficient in equation (42) is given in Table 1 as
‘‘sea level: load thickness’’ to degree 12.
[39] We now evaluate the sea surface geopotential �V

subject to the mass exchange condition given by equation
(34). Integrating equation (41) over the sphere, we find the
degree-0 global spectral coefficient is

ŜC00 ¼
X�n
n¼1

Xn
m¼0

XC;Sf g

�

3 1þ k 0n � h0n
� �

rS
2nþ 1ð ÞrE

C�
nmT̂

�
nm

�2
nm

þ�V

g
CC
00 ð43Þ

Now from our previous discussion on mass exchange, we
must satisfy the condition

ŜC00 ¼
Z Z
ocean

T̂ �ð Þd� ¼
X�n
n¼1

Xn
m¼0

XC;Sf g

�

C�
nmT̂

�
nm

�2
nm

¼ �L̂C00 ð44Þ

and so equating (43) and (44),

�V

g
¼
X�n
n¼1

Xn
m¼0

XC;Sf g

�

1�
3 1þ k 0n � h0n
� �

rS
2nþ 1ð ÞrE

� �
C�
nmT̂

�
nm

CC
00�

2
nm

¼ eSC00 ð45Þ

where the first term in the square bracket is related to
change in global mean sea level from mass exchange, and
the smaller second term (previously derived by Dahlen

ETG 13 - 8 BLEWITT AND CLARKE: EARTH’S SHAPE WEIGHS SEA LEVEL



[1976]) is the contribution of average geoid and seafloor
deformation, which is generally nonzero even in the
absence of mass exchange. When using equation (41) for
interpreting sea level at any point, it is important to use the
spatial rather than spectral representation of the ocean
function, because Ŝ(�) must go discontinuously to zero as
we cross a coastline toward land.

4.3. Geocentric Sea Level and Static Topography

[40] We now digress to discuss sea level as inferred by
satellite altimetry. Satellite altimetry of the ocean surface is
inherently sensitive to geocentric sea level rather than
relative sea level. Perhaps misleadingly, geocentric sea level
has been referred to as ‘‘absolute sea level,’’ when in fact, it
is dependent on the choice of reference frame origin;
ironically, relative sea level is absolute in this sense, as it
is frame-independent. To be truly self-consistent, the coor-
dinates of the tracking stations used to determine the
geocentric satellite position should be allowed to move with
the loading deformation, for example using the same epoch
coordinates as those used to estimate the total load. The
ocean’s dynamic topography used to investigate ocean
currents can be derived if we know the height of the sea
surface above the ocean’s static topography. For purposes of
our problem, the ocean’s static topography may be defined
as the geocentric height of the ocean surface in hydrostatic
equilibrium if there were no ocean currents or steric effects.
Contributing factors therefore include the deformation of
the geoid and the difference in potential between the
deformed geoid and the new sea surface. We formally
define the ocean’s static topography using this new equipo-
tential surface which is given everywhere as

~O �ð Þ ¼ N �ð Þ þ�V=g ð46Þ

where �V/g can be estimated by equation (45) and the
geoid height can be estimated by

N̂ �ð Þ ¼
X�n
n¼1

Xn
m¼0

XC;Sf g

�

1þ k 0n
� � 3rS

2nþ 1ð ÞrE
T̂�
nmY

�
nm �ð Þ ð47Þ

Using equation (46) it is straightforward to calculate the
mean change in sea level in a geocentric frame (where the
degree-1 load Love numbers must be consistent with
the type of geocentric frame used to derive the altimeter
coordinates [Blewitt, 2003]),

�O ¼

Z Z
ocean

eO �ð Þd�

Z Z
ocean

d�
¼
X1
n¼1

Xn
m¼0

XC;Sf g

�

C�
nm
eO�
nm

CC
00�

2
nm

¼
X1
n¼1

Xn
m¼0

XC;Sf g

�

1þ 3h0nrS
2nþ 1ð ÞrE

� �
C�
nmT̂

�
nm

CC
00�

2
nm

¼ �S þ �H ð48Þ

where explicitly shown is the intuitive notion that mean
geocentric sea level O is the sum of mean relative sea level
�S, given by equation (32), and the mean height change of
the ocean floor H, where H is given by equation (25). It can
be seen from Table 1 (surface height: load thickness ratio)

that geocentric and relative mean sea level only differ by a
few percent (at most 11.2% for pure degree 2), which is not
surprising since the seafloor is deformed an order of
magnitude less than the change in sea level. Therefore the
cautionary remark above regarding the treatment of station
locations for satellite altimetry is only important at this
level.

4.4. Linearized Sea Level Equation

[41] Before we solve for the land load, it will be neces-
sary to find the global spectral coefficients of equation (41).
This is the most computationally difficult part of the
calculation. We make use of the fact that, as for any function
on a sphere, the product of two spherical harmonics must
itself be expressible as a spherical harmonic expansion. The
product-to-sum conversion formula for spherical harmonics
is [Balmino, 1994]

Y�0

n0m0 �ð ÞY�00

n00m00 �ð Þ ¼
X1
n¼0

Xn
m¼0

XC;Sf g

�

A
�;�0;�0

nm;n0m0;n00m0Y
�
nm �ð Þ ð49Þ

where the coefficients can be expressed by applying
equation (A6):

A
�;�0 ;�00

nm;n0m0;n00m00 ¼
�2

nm

4p

Z
�
Z

Y�
nm �ð ÞY�00

n0m0 �ð ÞY�00

n0m00 �ð Þd� ð50Þ

The integral of triple complex spherical harmonics arises in
angular momentum theory of quantum mechanics [Wigner,
1959], and can be solved using Clebsch-Gordan coefficients
or Wigner 3-j coefficients [Dahlen, 1976; Balmino, 1994].
Appendix B shows our method for the case of classical
spherical harmonics. Once calculated, these integrals can be
used to determine the global spectral coefficients for relative
sea level, given the quasi-spectral coefficients. The ocean
function product-to-sum conversion can be derived using
equation (49):

C �ð ÞeS �ð Þ ¼
X
n0m0�0

X
n00m00�00

C�00

n00m00eS�0

n0m0Y
�0

n0m0 �ð ÞY�00

n00m00 �ð Þ

¼
X
nm�

X
n0m0�0

X
n00m00�00

C�00

n00m00eS�0

n0m0A
�;�0;�00

nm;n0m0;n00m00Y
�
nm �ð Þ ð51Þ

or alternatively in coefficient form as a matrix equation
[e.g., Dickman, 1989, equation (14)]:

½C �ð Þ~S �ð Þ
�nm ¼
X
n0m0�0

X
�;�0

nm;n0m0eS�0

n0m0 ð52Þ

where we define the coefficients of the product-to-sum
transformation:

X
�;�0

nm;n0m0 ¼
X1
n00¼0

Xn00
m00¼0

XC;Sf g

�00

A
�;�0;�00

nm;n0m0;n00m00C
�00

n00m00 ð53Þ

That is, multiplication of a function by the ocean function
can be achieved by a linear transformation of that function’s
coefficients. Appendix B shows explicitly how equation
(52) is actually computed by a recursive algorithm, and
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Appendix C presents results of this calculation up to degree
2 (as a check for readers wishing to reproduce our results or
apply our method). Table 3 shows the product-to-sum
transformation coefficients for spectral interactions to
degree 2 � degree 2 assuming the ocean function
coefficients of Balmino et al. [1973].
[42] Because of selection rules on indices that lead to

nonzero integrals, the inner summation over double-primed
indices involves only a limited number of contributing
terms. As Dahlen [1976] points out, one result of this is
that the ocean function is only required to degree 2n for an
exact computation of its effect on an arbitrary degree-n
function. Thus the spherical harmonic formulation is
especially well suited for the investigation of low-degree
phenomena.
[43] It should be emphasized that truncation implies that a

sea level function constructed spatially using global spectral
coefficients will generally be nonzero on land. This is why
the quasi-spectral sea level function is recommended for
spatial representation of sea level. However, we need the
true spectral coefficients to compute the contribution of sea
level to the observed total deformation.

4.5. Inversion for Continental Mass Redistribution

[44] The principle behind the following procedure is that
spectral coefficients are applicable to the physics of loading,
but quasi-spectral coefficients characterize the spatial dis-
tribution. Using sea level’s spectral coefficients, we can
subtract the sea level’s contribution from the observed total
deformation, and thus infer the continental load’s spectral
coefficients. Then the continental load’s spectral coeffi-
cients can be inverted for quasi-spectral coefficients, which
can be used to infer the continental load in the spatial
domain.
[45] Formally, spectral coefficients for the land load up to

degree n can be estimated as

L̂�nm ¼T̂�
nm �Ŝ�nm ð54Þ

where Ŝ�nm is given by equation (41). For spatial represen-
tation, the quasi-spectral land load function eL(�) satisfies
the following equation:

L̂ �ð Þ ¼ 1� C �ð Þ½ 
eL �ð Þ ð55Þ

such that the spectral coefficients are the same on both sides
of this equation up to degree n. Equating the spectral
coefficients, we find that

L̂�nm¼
X�n
n0¼0

Xn0
m0¼0

XC;Sf g

�0

d�;�
0

nm;n0m0 �X
�;�0

nm;n0m0

� �eL�0

n0m0 ð56Þ

Thus equating (54) with (56) relates the quasi-spectral
coefficients eLnm� to the estimated load coefficients T̂ nm

� . To
find eLnm� up to degree n requires inversion of the matrix form
of equation (56). Once we find eLnm� , we can then construct
the land load spatially using equation (55).

4.6. Reconstruction of the Total Load at
Higher Degrees

[46] Equation (54) guarantees that our model for land and
ocean mass redistribution yields spectral coefficients for the
total load that agree with our original estimates T̂ nm

� for n =
1,. . .n. However, note that equations (54) and (56) can be
used to predict higher-degree coefficients n > n of the total
load, because there is no restriction in these equations on the
value of n.

T̂ �ð Þ ¼ C �ð ÞeS �ð Þ þ 1� C �ð Þ½ 
eL �ð Þ

T̂�
nm ¼

X�n
n0¼0

Xn0
m0¼0

XC;Sf g

�0

X
�;�0

nm;n0m0eS�0

n0m0

h
þ d�;�

0

nm;n0m0 � X
�;�0

nm;n0m0

� �eL�0

n0m0

i
ð57Þ

Whether these predicted values are physically meaningful
depends on the underlying model assumptions that provide
the ‘‘extra information’’. First consider the extra information
from the ocean response model. Our model only considers
the passive response of the ocean to degree n. This may be a
reasonable approximation, because the ocean’s response to
higher-degree loading is monotonically decreasing, and at
some point becomes insignificant. (This is ultimately a
consequence of Newton’s law of gravitation). In any case,
the situation is better than the simpler assumption that mass
exchange produces a uniform change in sea level [Chao and
O’Connor, 1988].
[47] Second, extra information comes by assuming the

land load is better characterized by equation (55) rather than
a simple spherical harmonic expansion truncated to the
same degree. This assumption is reasonable from the point
of view that we do know that the land load is exactly zero
except on land, and there will generally be a physically
meaningful discontinuity in loading at the coastlines.
[48] Third, by truncating the underlying models at n, we

are implicitly assuming that all total load coefficients of
degree higher than n are entirely driven by spectral leakage

Table 3. Product-to-Sum Transformation Coefficientsa

Xnm,n0m0
�, �0

n,m,�

n0,m0,�0

0,0,C 1,0,C 1,1,C 1,1,S 2,0,C 2,1,C 2,1,S 2,2,C 2,2,S

0,0,C 0.697 �0.073 �0.062 �0.032 �0.027 �0.031 �0.040 0.062 0.003
1,0,C �0.218 0.643 �0.031 �0.040 �0.057 �0.063 �0.094 0.123 �0.156
1,1,C �0.187 �0.031 0.755 0.002 0.062 �0.100 �0.078 �0.283 �0.290
1,1,S �0.097 �0.040 0.002 0.693 0.002 �0.078 �0.223 �0.093 �0.214
2,0,C �0.134 �0.094 0.103 0.003 0.638 0.027 0.012 0.084 �0.045
2,1,C �0.052 �0.035 �0.056 �0.043 0.009 0.771 �0.012 �0.124 �0.064
2,1,S �0.066 �0.052 �0.043 �0.124 0.004 �0.012 0.612 0.076 0.003
2,2,C 0.026 0.017 �0.039 �0.013 0.007 �0.031 0.019 0.744 �0.085
2,2,S 0.001 �0.022 �0.040 �0.030 �0.004 �0.016 0.001 �0.085 0.720

aTransformation defined by equation (53), with computational method shown in Appendices B and C. Calculation uses ocean function coefficients from
Table 2. The strong diagonal nature is evident.
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from the lower-degree spherical harmonic forcing through
the geographical distribution of continents and oceans.
Whether or not this assumption is to be considered reason-
able depends on a priori knowledge. For example, one
working hypothesis might be that degree-2 seasonal mass
redistribution is dominated by the interaction of degree-1
(i.e., interhemispheric) loading with the geographical distri-
bution of the continents. One indicator to support this
hypothesis is that VLBI baselines have annual signals with
a geographic pattern of phase expected of a seasonal degree-
1 signal, which is out of phase in opposite hemispheres
[Lavallée and Blewitt, 2002].

5. Demonstration

5.1. Demonstration Goals

[49] We now demonstrate the above method on the
simplest possible case, where we invert published seasonal
degree-1 loading estimates from the GPS global network
operated by the IGS. Apart from clarifying the steps of the
calculation, the demonstration provides additional insight
into the relationships between the various physical param-
eters, and the results provide an appreciation of the
relative magnitudes of the various physical quantities
discussed. Despite the obvious limitation in spatial reso-
lution, it also provides quantitative first-order answers to
several research questions. In the following demonstration,
it should be kept in mind that although the solutions are
constrained by physical self-consistency, they are entirely
driven by observations of GPS surface deformation, with
no a priori information on sea level or continental water.
In effect, we are using the solid Earth itself as a weighing
machine.
[50] The utility of this demonstration toward answering

specific questions is naturally limited by the hemispheric-
scale spatial resolution implied by degree-1 truncation.
Interpretation of loading at a specific location would be
suspect for continental water; however it would be more
reasonable for the passive ocean response, due to its higher
sensitivity to low-degree mass redistribution. The main goal
of this exercise is to show how physical self-consistency
governs the inversion procedure, and into the potential of
this technique to investigate the global hydrological cycle.
By its nature, the technique provides valuable integral
constraints on the total load, which complements studies
using specialized models. The resulting estimates of long-
wavelength static ocean topography (and geoid deforma-
tion) might indicate to physical oceanographers the level of
errors incurred when interpreting satellite altimeter data in
terms of dynamic ocean topography.

5.2. GPS Data and Spectral Inversion
for Earth’s Shape

[51] We use the published empirical seasonal model of
degree-1 deformation derived from a global GPS network
[Blewitt et al., 2001]. This in turn was derived from weekly
estimates of the shape of the global network polyhedron
over the period 1996.0–2001.0, provided by several IGS
Analysis Centers using the fiducial-free method [Heflin et
al., 1992]. These were then combined by Blewitt et al.
[2001] to produce station coordinate time series according
to the method of Davies and Blewitt [2000] and Lavallée

[2000]. Residual displacement time series were formed for
each station by removing estimates of the velocity and
initial position from the coordinate time series, taking care
to reduce velocity bias by simultaneous estimation of annual
and semiannual displacement signals [Blewitt and Lavallée,
2002]. The degree-1 deformation was then estimated every
week, parameterized as a load moment vector in the CF
frame. The load moment coordinate time series were then fit
to an empirical seasonal model, parameterized by annual
and semiannual amplitudes and phases.
[52] The load moment data need to be converted into

equivalent height function data before we can start to apply
our equations. To do this, we note that equation (14) is
consistent with Blewitt et al. [2001, equation (6)] if we
identify

HC
11

HS
11

HC
10

0BBBB@
1CCCCA ¼ h01

M�

mx

my

mz

0BBBB@
1CCCCA ð58Þ

where h1
0 is the height load Love number (CF frame) andM�

is the mass of the Earth. Table 4 shows the estimated
degree-1 seasonal spectral coefficients for the height
function, derived by equation (58) from the published load
moment parameters of Blewitt et al. [2001]. Blewitt et al.
[2001, Figure 2] show the height function and the gradient
of the poloidal function (through their equation 11)
explicitly at 2-monthly intervals using a stacking technique.
The annual degree-1, order-0 (1,0) component dominates,
associated with seasonal interhemispheric mass exchange,
with maximum heights of 3 mm observed near the North
Pole near the end of August and near the South Pole near
the end of February.
[53] We scaled by a factor of 1.9 the one standard

deviation formal errors of Blewitt et al. [2001], such that
the chi-square per degree of freedom equals one when
fitting the weekly degree-1 deformation solutions to the
empirical seasonal model (D. Lavallée, personal communi-
cation, 2002). After this scaling, the errors in spectral
amplitudes of height are at the level of 0.15 mm, which is
a few percent of the (1,0) annual amplitude. While this
appears to reflect formal error propagation and the empirical
scatter in the data, it would not reflect interannual variability
in the seasonal cycle, which subjectively appears to be at the
1-mm level. Therefore the computed errors might not
accurately represent the errors in the seasonal model,
however they should indicate the precision of the geodetic
technique, and so suggest the potential of future analyses to
resolve extra empirical parameters for better characteriza-
tion of the time series.

5.3. Inversion for Total Load and Mean Relative
Sea Level

[54] Season variation in the total load spectral coefficients
was estimated using equation (31) and is shown in Table 4.
The degree-0 term was set to zero to conserve mass. The
total load follows the same spatial and temporal character-
istics as the height function, but is opposite in sign (opposite
in phase). Therefore the total load peaks near the North Pole
near the end of February. The amplitude for the dominant
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(1,0) spectral component is equivalent to a 59-mm column
of seawater; at a later stage of the calculation we will be
able to distinguish how much of this can be attributed
spatially to loading on land versus the oceans.
[55] What we can calculate at this stage is the total

amount of mass on land (which equals the negative amount
of mass in the oceans), by integrating the total load over
continental areas; thus we can calculate the contribution of
mass exchange to mean relative sea level. Using equation
(32), Table 5 shows our results for mean relative sea level,
which has annual amplitude 8.0 ± 0.4 mm peaking toward
the end of August. From equation (34), our result corre-
sponds to ocean-continent mass exchange of annual ampli-
tude (2.92 ± 0.14) � 1015 kg, with continental mass peaking
toward the end of February.

5.4. Inversion for Static Ocean Topography

[56] The sea surface follows the shape of the deformed
geoid, thus geocentric sea level and the deformed geoid are
identical for spectral components of degree 1 and above.
Using equation (47) and tabulated ‘‘geoid height: load
thickness’’ coefficients in Table 1, Table 4 shows our results
for seasonal variation in the deformed geoid. The degree-0
geoid height is constrained to zero due to total mass
conservation. The annual (1,0) term dominates with ampli-
tude 11.3 ± 0.5 mm, peaking toward the end of August. The
(1,1) terms are both less than half this amplitude.
[57] The degree-1 height of the geoid is reference-frame-

dependent. Here it is reckoned with respect to the origin of

the center of figure frame (CF). Thus the height of the
degree-1 geoid is simply a consequence of ‘‘geocenter
motion,’’ defined as the motion of CF with respect to the
center of mass of the entire Earth system (CM). In the CM
frame, for example, there would be no degree-1 geoid
height variation, and therefore no degree-1 component of
geocentric sea level. However, satellite altimetry measure-
ments are based on the derived coordinates of the satellite
altimeter, which typically do not incorporate seasonal geo-
center variations in the tracking station coordinates, and
therefore relate more closely to CF than CM.

Table 5. Seasonal Inversion for Global Mean Oceanographic

Parametersa

Parameter

Annual Semiannual

Amplitude,
mm

Phase,
deg

Amplitude,
mm

Phase,
deg

Mean relative sea level Sb 8.0 ± 0.4 234 ± 3 1.0 ± 0.7 20 ± 22
Mean marine geoid
height N

1.5 ±0.1 234 ± 3 0.2 ± 0.1 20 ± 22

Mean ocean floor height H 0.40 ± 0.02 54 ± 3 0.05 ± 0.02 200 ± 22
Mean geocentric sea level
= O + S + H

7.6 ± 0.4 234 ± 3 0.9 ± 0.4 20 ± 22

Sea surface geopotential
heightc �V/g = O � N

6.1 ± 0.3 234 ± 3 0.7 ± 0.3 20 ± 22

aMean values over oceanic areas computed in spectral domain using
ocean function coefficients of Table 1.

bMean relative sea level computed equivalently using either total load
spectral coefficients or the quasi-spectral sea level coefficients.

cAbove deformed geoid.

Table 4. Seasonal Degree-1 Inversion for Static Ocean Topography

Parameter

Annual Semiannual

Amplitude, mm Phase,a deg Amplitude, mm Phase,a deg

Height Function Spectral Coefficients from GPS Inversionb

Ĥ10
C 2.97 ± 0.12 236 ± 2 0.67 ± 0.12 27 ± 10

Ĥ11
C 0.90 ± 0.15 266 ± 9 0.31 ± 0.15 249 ± 26

Ĥ11
S 1.30 ± 0.13 165 ± 6 0.27 ± 0.12 121 ± 25

Total Load Spectral Coefficientsc

T̂00
C 0.0 ± 0 - 0.0 ± 0 -

T̂10
C 59.4 ± 2.5 56 ± 2 13.5 ± 2.4 207 ± 10

T̂11
C 18.0 ± 3.0 86 ± 9 6.3 ± 2.9 69 ± 26

T̂11
S 26.1 ± 2.6 345 ± 6 5.4 ± 2.4 301 ± 25

Geocentric Sea Level and Geoid Height Spectral Coefficientsd

N̂00
C 0.0 ± 0 - 0.0 ± 0 -eO00
C = �V/g 6.1 ± 0.3 234 ± 3 0.7 ± 0.3 20 ± 22eO10
C = N̂10

C 11.3 ± 0.5 56 ± 2 2.6 ± 0.5 207 ± 10eO11
C = N̂11

C 3.4 ± 0.6 86 ± 9 1.2 ± 0.6 69 ± 26eO11
S = N̂11

S 5.0 ± 0.5 345 ± 6 1.0 ± 0.5 301 ± 25

Relative Sea Level Quasi-Spectral CoefficientseeS00C = �V/g 6.1 ± 0.3 234 ± 3 0.7 ± 0.3 20 ± 22eS10C = eO10
C � Ĥ10

C
14.3 ± 0.6 56 ± 2 3.2 ± 0.6 207 ± 10eS11C = eO11

C � Ĥ11
C

4.3 ± 0.7 86 ± 9 1.5 ± 0.7 69 ± 26eS11S = eO11
S � Ĥ11

S
6.3 ± 0.6 345 ± 6 1.3 ± 0.6 301 ± 25

aUses the convention cos 2pf t � t0ð Þ � ff

� �
, where f is frequency, t is time, t0 is 1 January; so ff/2pf is time when f harmonic is

maximum.
bDerived from equation (58) using data from 1996.0 to 2001.0 in center of figure frame [Blewitt et al., 2001]. One standard

deviation formal errors are scaled here by factor 1.9 to normalize the chi-square per degree of freedom for the seasonal model.
cDegree-0 total load constrained to zero due to conservation of mass. All other coefficients use surface height to load thickness ratio

in Table 1.
dDegree-0 geocentric sea level computed by equation (45). All other coefficients use geoid height to load thickness ratio in Table 1.
eCan be computed equivalently using sea level to load thickness ratio in Table 1.
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[58] However, degree-1 variation in relative sea level is
not frame dependent, since it relates to the sea surface
height above the deformed ocean floor rather than above a
frame origin. Table 4 lists our solution for degree-1 quasi-
spectral coefficients of relative sea level, computed as the
difference between the heights of the deformed geoid height
and the ocean floor, equation (42).
[59] Table 4 also shows the degree-0 coefficient for

geocentric sea level computed as the geopotential height
of sea level with respect to the deformed geoid, equation
(45). This is identical to the degree-0 quasi-spectral relative
sea level, because the global average change in height of the
solid Earth surface is zero (due to mass conservation). The
annual variation in geopotential height of the sea surface is
6.1 ± 0.3 mm, peaking near the end of August.
[60] This is by far the largest annual volumetric compo-

nent of mean relative sea level (Table 5), the other two
volumetric components being the mean marine geoid height
with annual amplitude 1.5 ± 0.1 mm, and the mean height of
the deformed ocean bottom with annual amplitude 0.40 ±
0.02 mm (of opposite phase). Added together appropriately,
mean relative sea level has annual amplitude 8.0 ± 0.4 mm
(consistent with our previous calculation using the total
load); mean geocentric sea level (in the CF frame) has
annual amplitude 7.6 ± 0.4 mm, equation (48), peaking on
25 August.
[61] Seasonal variations in sea level depend strongly on

location (Figures 2 and 3), with seasonal peak values
ranging from 3 to 19 mm. The smallest variations occur
in the northern midlatitude Pacific; the annual signal can
become so small that the semiannual signal dominates,
which gives rise to two seasonal peak values as low as
3 mm in April and November. The largest variations occur
in polar regions. Since the degree-0 quasi-spectral coeffi-
cient of relative sea level and the (1,0) coefficient are
approximately six months out of phase, the geographic
pattern of sea level is highly asymmetric between the
Arctic and Antarctic (Figure 4). In the Arctic, these two
terms interfere destructively, such that the seasonal varia-
tion in sea level peaks at approximately 9 mm in late
March (including the semiannual terms). However, in the
Antarctic, the two coefficients add constructively, such
that the seasonal variation in sea level peaks at approxi-
mately 18 mm in mid-August. The intuitive reason for this
is that, in the Arctic, the gravitational attraction of the large
amount of water (retained on land in Northern Hemisphere
winter) draws sea level higher, however this is partly
cancelled by the global reduction in sea level necessary
to provide mass balance. However, in the Antarctic, these
two effects add together constructively. The underlying
reason is that far more water is retained on land in the
Northern Hemisphere than Southern Hemisphere in their
respective winter seasons.

5.5. Inversion for Continental Water Topography

[62] Global spectral coefficients for relative sea level
were computed from the quasi-spectral coefficients using
the product-to-sum transformation, equation (52), where the
transformation is given in Table 3. Results of this calcula-
tion up to degree 1 are shown in Table 6 (in principle, there
are contributions from all degrees to infinity). This then
enables calculation of the global spectral coefficients for

continental water loading using equation (54). Because of
mass conservation and as Table 6 shows, the degree-0
coefficient for the continental load, with annual amplitude
5.6 ± 0.3 mm peaking in late February, is of the same
magnitude but opposite phase as the degree-0 coefficient of
relative sea level.
[63] The annual amplitudes for degree-1 continental load-

ing are approximately 3–5 times larger for the land load
than for the ocean load; the (1,0) coefficient dominates at
49.1 ± 2.1 mm, peaking in late February. This directly
relates to the relative contribution of land loading and ocean
loading to the total degree-1 load (and hence geocenter
variations).

Figure 2. Monthly snapshots of mass distribution on land
and in the oceans derived from observed degree-1
deformation: (left) (top to bottom) 1 January through 1
June, and (right) 1 July through 1 December. Different
scales are used for land and ocean distributions, as there is a
factor of 10 more load variation on land than in the oceans.
See color version of this figure at back of this issue.

BLEWITT AND CLARKE: EARTH’S SHAPE WEIGHS SEA LEVEL ETG 13 - 13



[64] Equation (56) was inverted using the inverse of the
product-to-sum transformation (Table 3) truncated to
degree 1. Table 6 shows the estimated quasi-spectral
coefficients of the land load. Figure 2 also shows the spatial
inversion for land load along with sea level. Figure 2
shows that the pattern of spatial variation in oceanic mass
redistribution is similar to that on land, although it is
approximately a factor of 10 smaller. The land load is
dominated by the (1,0) annual coefficient, at 150.1 ± 6.4

mm, peaking at the end of February. However, the degree-0
coefficient is almost exactly out of phase with this (1,0)
coefficient, such that it reduces the peak load in the Arctic
Circle, but enhances it in the Antarctic. Intuitively, the
reason for this out-of-phase behavior is related to the
larger amount of land in the Northern Hemisphere and
the need for the total land load to be a relatively small
mass. Simply put, when the (1,0) term is large, it contrib-
utes a lot to mass on land. This is partly balanced by a

Figure 3. Seasonal variation in the constituents of sea level at three sample locations showing very
different behavior: (a) North Atlantic (45�N, �30�E), where sea level variation is smaller than geoid
variation due to less total oceanic water (which controls the sea surface geopotential) in Northern
Hemisphere winter when gravitational attraction from land is largest; (b) South Atlantic (�45�N,
�10�E), where geoid variation and oceanic water are in phase, causing larger variations in sea level; and
(c) North Pacific (45�N, �170�E) where competing effects approximately cancel the annual variation, so
semiannual variation dominates.
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degree-0 term of opposite phase such that the total land
load is sufficiently small so that the landmass budget
balances with mean relative sea level.

5.6. Discussion of Results

[65] As previously noted, the interpretation of the above
results should be limited to spatial resolution of hemispheric
scale. By comparing results with those from independent
techniques, it would be useful to assess the extent to which
a degree-1 truncated model can predict large-scale phenom-
ena, such as seasonal variation in global mean sea level.
First, consider our result on global mean geocentric sea
level with annual amplitude 7.6 ± 0.4 mm with maximum
sea level occurring on 25 August. This is to be compared
(Figure 5) with annual amplitudes from TOPEX-Poseidon,

which (after correction for steric effects) are in the range 7–
10 mm, peaking during the period 12–24 September [Chen
et al., 1998, 2002; Minster et al., 1999]. Assuming the large
steric corrections (of order 5 mm in amplitude, half the total
effect) are correct, this good agreement between our result
and that of altimetric methods suggests that seasonal inter-
hemispheric mass transfer is the dominant driving mecha-
nism for seasonal change in sea level. In contrast,
hydrological models of global mean sea level differ by up
to a factor of 3; thus geodesy provides useful constraints on
global hydrological models [Chen et al., 2002].
[66] Our result on ocean-continent mass exchange of

annual amplitude (2.92 ± 0.14) � 1015 kg, with continental
mass peaking toward the end of February, implies a peak-to-
peak seasonal continental mass variation of (5.8 ± 0.3) �

Figure 4. Seasonal variation in relative sea level compared between the Arctic (75�N, 0�E) and
Antarctic (�75�N, 180�E). As would be expected for seasonal forcing, the phase is opposite between
these locations. The difference in amplitude can be explained almost entirely by the annual variation in
mean sea level, which in turn is caused by the asymmetry in continental area between the Northern and
Southern Hemispheres.

Table 6. Seasonal Inversion for Continental Water Topographya

Parameter

Annual Semiannual

Amplitude, mm Phase, deg Amplitude, mm Phase, deg

Relative Sea Level Global Spectral Coefficientsb Ŝ(�) = C(�)eS(�)
ŜC00 5.6 ± 0.3 234 ± 3 0.7 ± 0.3 20 ± 22
ŜC10 10.3 ± 0.4 57 ± 2 2.3 ± 0.4 206 ± 10
ŜC11 3.9 ± 0.6 80 ± 9 1.1 ± 0.6 71 ± 29
ŜC11 4.4 ± 0.4 345 ± 6 0.9 ± 0.4 305 ± 26

Continental Water Global Spectral Coefficientsc

L̂00
C = � Ŝ00

C 5.6 ± 0.3 54 ± 3 0.7 ± 0.3 200 ± 22
L̂10
C = T̂10

C � Ŝ10
C 56 ± 2 11.2 ± 2.0 207 ± 10

L̂11
C = T̂11

C � Ŝ11
C 14.2 ± 2.4 88 ± 10 5.2 ± 2.3 69 ± 26

L̂11
S = T̂11

S � Ŝ11
S 345 ± 6 4.5 ± 2.0 300 ± 26

Continental Water Quasi-Spectral Coefficientsd L̂(�) = [1 � C(�)]eL(�)eL00C 30.1 ± 2.0 238 ± 4 2.3 ± 1.9 345 ± 18eL10C 150.1 ± 6.4 58 ± 2 34.7 ± 6.1 205 ± 10eL11C 61.2 ± 11.2 85 ± 10 24.1 ± 10.9 65 ± 26eL11C 68.5 ± 7.2 337 ± 6 15.1 ± 6.8 316 ± 26
aErrors propagated formally without a priori uncertainty on total load coefficients of degree 2 and higher (which may have spectral

leakage).
bComputed in the spectral domain by product-to-sum transformation (Table 3) according to equation (52). Full spectrum exists in

principle.
cGiven to the degree to which total load has been estimated (degree 1).
dComputed using inverse of product-to-sum matrix truncated at degree 1.
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1015 kg. By comparison, satellite radar altimetry (of the
surface and base) of the Northern Hemisphere snowpack
have been used to infer a peak-to-peak snow mass of 3 �
1015 kg [Chao et al., 1987; Chang et al., 1990] peaking
during February–March. Taken together with our result,
this constrains the planet’s peak-to-peak seasonal ground-
water mass to be <3 � 1015 kg (excluding snow), assuming
it has a similar phase. This is consistent with (but stronger
than) the order-of-magnitude analysis of Blewitt et al.
[2001], which set an upper bound to winter groundwater
at <7 � 1015 kg. Even stronger upper bounds are possible if
we assume an out of phase contribution to the total mass
exchange from seasonal snowpack variations in Antarctica
(which was not included in the satellite radar results).
[67] Note in Figure 5 the asymmetric shape of our

estimate of seasonal variation in global mean sea level.
The maximum slope is 63% greater than the magnitude of
the minimum slope. A similar asymmetry is also seen in the
TOPEX-Poseidon results and in the hydrological models.
This strongly indicates that water runoff in Northern Hemi-
sphere spring [Dai and Trenberth, 2002] takes place at a
much faster rate than continental water accumulation toward
the end of the year.
[68] While we have shown results of our inversion on

seasonal variation in sea level at specific geographic loca-
tions, it would be difficult to make a meaningful comparison
with other techniques, because of the large uncertainty in the
ocean’s dynamic topography. However, one clear conclusion
from our results is that physical self-consistency forces the

ocean to have seasonal static topography at the level of
10 mm. As a rule of thumb, sea level variations in offshore
regions appeared to be �10% of the water-equivalent height
of the adjacent continental load. Table 7 shows that the
passive ocean response to degree-1 loading amplifies the
annual degree-1 land load by 21–27%, but that the ocean
does not change the annual phase significantly (�1 day).
This is in intuitive accord with the above rule of thumb if we
multiply 10% by the ratio of ocean to land areas. We deduce
that models of solid Earth deformation on the global scale
(typically using Green’s functions) and models of geocenter
displacements, based on adding together contributions from
the land and oceans, may be biased at this level unless self-
consistency is rigorously incorporated.
[69] Our spatial inversion for sea level indicates that

attention should be paid to the asymmetry in ocean bottom
pressure in the Arctic versus Antarctic. The demonstration
showed how this is a consequence of a larger seasonal
variation in water retained on land in the Northern Hemi-
sphere versus the Southern Hemisphere (thus the geoid
height is of opposite phase to global mean sea level in the
Arctic, and of similar phase in the Antarctic).

Table 7. Amplification of Degree-1 Loading by Passive Ocean

Response

Parameter
Comparison

Annual Semiannual

Amplitude
Ratioa

Phase
Shift,b

deg
Amplitude
Ratioa

Phase
Shift,b

deg

T̂10
C relative to L̂10

C 1.21 0.1 1.20 �0.2
T̂11
C relative to L̂11

C 1.27 �1.6 1.22 0.4
T̂11

S relative to L̂11
S 1.20 0.1 1.20 0.7

aDefined as the ratio of spectral amplitudes of the total (continental plus
ocean) load to the continental load.

bDefined as the difference in phase between the total load and continental
load.

Figure 6. Snapshots of the longitudinal profile in
equatorial sea level across the Pacific Ocean, showing a
seasonal ‘‘see-saw’’ effect.

Figure 5. Seasonal variation in geocentric global mean sea
level, comparing the results of this study to those derived
from TOPEX-Poseidon data minus a steric model: (1) Chen
et al. [2002], (2) Chen et al. [1998], and (3) Minster et al.
[1999]. Our geocentric results are with respect to the center
of figure (CF) frame [Blewitt, 2003]. Also shown for
comparison are two hydrological predictions of relative
global mean sea level calculated from the NCAR CDAS-1
model [Chen et al., 2002] and the NASA GEOS-1 model
[Chen et al., 1998], although other hydrological predictions
not shown here can differ in amplitude by a factor of 3
[Chen et al., 2002].

ETG 13 - 16 BLEWITT AND CLARKE: EARTH’S SHAPE WEIGHS SEA LEVEL



[70] The potential of this technique is perhaps best
illustrated by the spatial inversion’s prediction on long-
wavelength seasonal gradients in static ocean topography
(both relative and geocentric). For example, our solution
predicts a 10 mm east-west sea surface height difference
spanning the equatorial Pacific Ocean (15,000 km) which
behaves like an annual see-saw (Figure 6). The largest see-
saw gradients are observed in the equatorial Pacific and
Atlantic Ocean in the north-south direction where, at their
seasonal peak, sea level can vary 20 mm over 10,000 km.
We caution that such gradients in static topography might be
misinterpreted in terms of basin-scale dynamics when
analyzing satellite altimeter data.

6. Prospects for Higher Resolution Inversion

6.1. Reconstruction of Total Load and Height
Function to Degree 2

[71] We speculate on prospects for positive identification
and interpretation of seasonal signals at higher degrees. Let
us first consider degree-2 loading. Using equation (57),
Table 8 shows the degree-2 coefficients of the total load,
assuming that relative sea level and the continental water load
have no significant quasi-spectral power above degree 1.
We call this the ‘‘degree-1 dominance hypothesis,’’ and offer
no evidence at this stage that it holds, except to conjecture
that seasonal retention of water on land might be dominated
by mass exchange between the Northern and Southern
Hemispheres. While this hypothesis has more general

implications, our purpose here is to quantify the magnitude
of possible degree-2 signals and thus assess the feasibility of
detection. The solution predicts that degree-2 load would
be dominated by the T21

S amplitude of 11.0 ± 0.9 mm
(peaking in late January).
[72] The results of Table 8 reflect the contribution to

degree-2 loading from the interaction of a degree-1 pattern
of continental water masked by the geographic distribution
of the continents. This could lend insight into possible
mechanisms for polar motion excitation by (2,1) coeffi-
cients. In particular, we suggest the annual (2,1) coefficient
as a plausible mechanism to excite the Chandler wobble, if
sufficiently large.
[73] The contribution of degree-1 land loading to degree-2

surface height deformation is largest in the annual
coefficients at H21

C = 0.77 ± 0.07 mm and H21
S = 1.23 ±

0.10 mm, both peaking in the late July to mid-August time
frame. Judging by the clear detection of degree-1 height
signals of similar magnitude, the annual (2,1) coefficients
should be at detectable levels. The magnitude of the
predicted degree-2 signals is partly due to the fact that,
of all the degrees, degree-2 deformation has the largest
surface height to load thickness ratio at 11.2% (Table 1),
which is more than twice that of degree-1 in the CF frame
at 5%. We conclude that degree-1 land loading alone should
be sufficient to create a detectable degree-2 deformation
signal.

6.2. Higher Degrees

[74] Signal detection of higher degrees depends on three
things. First, as previously discussed, is the issue of the
number and distribution of GPS stations, which in principle
might currently limit detection to around degree-9.
[75] Second, there must be sufficient power in the actual

loads at higher degrees. Loading models predict signifi-
cant variation in hydrologic loading (at the several milli-
meter deformation level) on continental scales [Van Dam
et al., 2001], so this would not appear to be a limiting
factor, assuming that the goal is inversion in the spatial
domain.
[76] Thirdly, there must be a sufficient deformation re-

sponse of the solid Earth at higher degrees as compared
measurement errors. As Table 1 shows, beyond degree 2 the
surface height to load thickness ratio decreases monotoni-
cally. By degree 9 the ratio has fallen to 4%. This is of
similar magnitude to degree 1, which is clearly detectable.
[77] The evidence therefore suggests that spectral inver-

sion of loading up to degree 9 and spatial inversion of
continental-scale loads are feasible. It is recommended that
covariance analysis be used (in parallel with attempts to
interpret deformation data) to understand how the estimated
spectral coefficients are theoretically correlated for the
global IGS network, and how this maps into spatial
resolution.

7. Conclusions

[78] We have developed an inversion method for mass
redistribution on the Earth’s surface given GPS measure-
ments of the solid Earth’s varying geometrical shape. The
method is based on a load Love number formalism, using
gravitational self-consistency to infer the relative contribu-

Table 8. Reconstruction of Total Load and Height Functiona

Parameter

Annual Semiannual

Amplitude,
mm

Phase,
deg

Amplitude,
mm

Phase,
deg

Consistency Check, Degree-1 Total Load b

T̂00
C 0.0 ± 0 – 0.0 ± 0 –

T̂10
C 59.4 ± 2.5 56 ± 2 13.5 ± 2.4 207 ± 10

T̂11
C 18.0 ± 3.0 86 ± 9 6.3 ± 2.9 69 ± 26

T̂11
S 26.1 ± 2.6 345 ± 6 5.4 ± 2.4 301 ± 26

Predicted Degree-2 Total Load c

T̂20
C 5.1 ± 1.4 28 ± 16 4.9 ± 1.3 225 ± 16

T̂21
C 6.9 ± 0.6d 48 ± 5 0.2 ± 0.6 79 ± 148

T̂21
S 11.0 ± 0.9d 22 ± 5 1.1 ± 0.9 286 ± 46

T̂22
C 0.5 ± 0.5 88 ± 5 1.3 ± 0.5 44 ± 20

T̂22
S 5.3 ± 0.5 50 ± 5 0.3 ± 0.5 76 ± 102

Predicted Degree-2 Height Functionc

Ĥ20
C 0.57 ± 0.15 208 ± 16 0.55 ± 0.15 45 ± 16

Ĥ21
C 0.77 ± 0.07d 228 ± 5 0.03 ± 0.07 259 ± 148

Ĥ21
S 1.23 ± 0.10d 202 ± 5 0.12 ± 0.10 106 ± 46

Ĥ22
C 0.05 ± 0.05 268 ± 5 0.15 ± 0.05 224 ± 20

Ĥ22
C 0.60 ± 0.05 230 ± 5 0.03 ± 0.05 256 ± 102

aComputed only using estimates and full covariance matrix of quasi-
spectral coefficients (to degree 1) for relative sea level and continental water
by applying equation (57) up to degree 2.

bCoefficients to degree 1 should (and do) agree with initial values in
Table 3.

cDegree-2 predictions only represent the contribution of loading given
quasi-spectrally to degree 1, by its spectral interaction with the ocean
function. Actual degree-2 load will also include higher quasi-spectral
degree loading, which may contribute constructively or destructively.

dSeasonal degree-1 annual loading interacting with the ocean function
leaks strongly into annual degree-2, order-1 terms, indicating a potential
mechanism to excite the Chandler wobble.
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tions of relative sea level and continental water loading to
the estimated spectral coefficients of the total load respon-
sible for the observed deformation. The method was dem-
onstrated for the simplest possible case using published
seasonal degree-1 deformations from the global IGS net-
work [Blewitt et al., 2001]. Inversion produces results on
relative mean sea level in terms of the geoid height, the
geopotential height of the sea surface (above the geoid), and
the height of the deformed ocean bottom. The demonstra-
tion illustrates how the relative contribution of the various
constituents of sea level is dependent on time of year and
geographic location.
[79] We find the annual amplitude of ocean-continent

mass exchange is (2.92 ± 0.14) � 1015 kg with maximum
ocean mass on 25 ± 3 August, corresponding to annual
amplitudes for mean relative sea level at 8.0 ± 0.4 mm, and
for mean geocentric sea level at 7.6 ± 0.4 mm. This result
confirms results from TOPEX-Poseidon (after steric correc-
tion), and places strong constraints on physically acceptable
hydrological models (which can differ by factors of three).
It also confirms that the steric corrections applied to
TOPEX-Poseidon data are reasonable as a global average.
Taking into account satellite altimeter measurements of the
Northern Hemisphere snowpack (at 3 � 1015 kg, peak to
peak), our results strongly constrain global groundwater to
have a peak-to-peak seasonal variation <3 � 1015 kg.
[80] The seasonal variation in sea level at a point strongly

depends on location, with typical amplitudes of 10 mm, the
largest being �20 mm around Antarctica in mid-August.
Sea level variations are predicted to be smaller in the
Northern Hemisphere due to the hemispheric asymmetry
in continental area. Sea level is lowered everywhere to
provide continental water in the Northern Hemisphere
winter, but at the same time this continental water raises
sea level in the Northern Hemisphere through gravitational
attraction. Seasonal gradients in static topography have
amplitudes of up to 10 mm over 5,000 km, which may be
misinterpreted as dynamic topography. Peak continental
loads are predicted to occur in polar regions in mid-winter
at the water-equivalent level of 100–200 mm.
[81] An analysis of the potential for this method to

estimate the seasonal surface load with higher spatial
resolution indicates that estimation to degree 9 is feasible.
This should allow for spatial resolution of continental-scale
hydrology. Finally, we have developed a general scheme
(Figure 1), which shows the potential for connecting various
geodetic data types through models of the globally loaded
Earth system. For example, it should be possible to jointly
invert GPS station position time series with independent
data on seasonal variation in the Earth’s gravity field up to
degree and order 4, now available from satellite laser
ranging [Nerem et al., 2000], with potentially much higher
spatial resolution predicted from missions like GRACE
[Wahr et al., 1998].

Appendix A: Spherical Harmonics Convention

[82] Recognizing ‘‘errors which arose from normalization
conventions’’ in the literature [Chao and O’Connor, 1988],
we choose to use classical, real-valued, unnormalized
spherical harmonics with the phase convention according
to Lambeck [1988]. An arbitrary function f (�) defined on a

spherical surface as function of position � (latitude j,
longitude l) can be expanded as

f �ð Þ ¼
X1
n¼0

Xn
m¼0

XC;Sf g

�

f �nmY
�
nm �ð Þ

¼
X1
n¼0

f C00Y
C
00 �ð Þ þ

Xn
m¼1

"
f CnmY

C
nm �ð Þ þ f SnmY

S
nm �ð Þ

� �#
ðA1Þ

where the cosine (� = C) and sine (� = S) spherical
harmonic basis functions are defined by

YC
nm �ð Þ ¼ Pnm sinjð Þ cosml

YS
nm �ð Þ ¼ Pnm sinjð Þ sinml

ðA2Þ

and where the associated Legendre polynomials are

Pnm xð Þ ¼ 1� x2
� �m=2

=2nn!
h i

dnþm=dxnþmð Þ x2 � 1
� �n ðA3Þ

The integral of two spherical harmonics isZ
�
Z

Y�
nm �ð ÞY�0

n0m0 �ð Þd� ¼ dnn0dmm0d��0
4p
�2

nm

ðA4Þ

where d� = d(sin j)dl and

�nm ¼ 2� dm0ð Þ 2nþ 1ð Þ n� mð Þ!
nþ mð Þ!

� �1
2

ðA5Þ

The spherical harmonic coefficients in equation (A1) are
therefore

f �nm ¼ �2
nm

4p

Z
�
Z

f �ð ÞY�
nmd� ðA6Þ

It is to be understood that Yn0
S and fn0

S are to be excluded
from all equations.

Appendix B: Product-to-Sum Conversion:
Recursive Method for Real Spherical Harmonics

[83] According to equation (52), the ocean function
product-to-sum conversion formula can be written in coef-
ficient form

C �ð ÞeS �ð Þ
h i�

nm
¼
X
n0m0�0

X
n00m00�00

"
A
�;�0;�00

nm;n0m0;n00m00C
�00

n00m00

ieS�0

n0m0 ðB1Þ

where eS(�) is the smooth sea level function, and C(�) is the
ocean function defined to be 1 over the oceans and 0 on
land. The notation for spherical harmonic coefficients is
given in Appendix A. Evaluation of equation (B1) first
requires a general solution to the following integral of triple
real-valued spherical harmonics defined by equation (50):

A
�;�0 ;�00

nm;n0m0;n00m00 ¼
�2

nm

4p

Z
�
Z

Y�
nm �ð ÞY�0

n0m0 �ð ÞY�00

n00m00 �ð Þd� ðB2Þ
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Typically this integral is discussed in quantum mechanics
for the case of complex spherical harmonics. For real-
valued spherical harmonics, the integral over longitude is
different, and there are no negative values of m.
[84] First of all, starting with the integral over latitude,

our method uses recursion formulae for associated Legendre
polynomials to derive recursion formulae for the integrals
themselves. The following ‘‘selection rules’’ indicate which
combinations of associated Legendre polynomials result in
a nonzero integral over latitude:

m00 ¼ m� m0j j

max n� n0j j; m0 � m00j jð Þ � n00 � nþ n0

nþ n0 þ n00 ¼ 2p

ðB3Þ

where p is an integer. Let us define the integral over latitude
for those indices that satisfy the above selection rules:

Q�
nm;n0m0;n00 ¼

Z1
�1

Pnm xð ÞPn0m0 xð ÞPn00 m�m0j j xð Þdx ðB4Þ

The solution to this can always be constructed from the
following general expression

Qþ
n1m1 ;n2m2;n3

�
Z1
�1

Pn1m1
xð ÞPn2m2

xð ÞPn3 m1þm2ð Þ xð Þdx ðB5Þ

which can then always be related to equation (B4) using the
following identities derivable from equation (B5)

Q�
n1m1;n2m2 ;n3

¼
Qþ

n3m3;n2m2;n1
if m1 � m2; m3 ¼ m1 � m2ð Þ

Qþ
n3m3;n1m1;n2

if m2 � m1; m3 ¼ m2 � m1ð Þ

8<:
ðB6Þ

Balmino [1978] presents a method to solve equation (B4) by
decomposition of associated Legendre polynomials as an
explicit function of their arguments. For computational
efficiency, and to facilitate control on rationalization of
fractions to mitigate potential overflow problems, we
computed and tabulated results for (B5) using recursion
relations for the integrals, which can be derived using
recursion relations for associated Legendre polynomials
[Rikitake et al., 1987]. This is a somewhat simpler (but
equivalent) method than suggested by Balmino [1978,
1994]. The recursion algorithm is now summarized. Starting
with formulae for order zero, we have

Qþ
n10;n20;0

¼ 2dn1n2
2n1 þ 1

Qþ
n10;n20;1

¼ 2n1dn1n2þ1

2n1 � 1ð Þ 2n1 þ 1ð Þ þ
2 n1 þ 1ð Þdn1n2�1

2n1 þ 1ð Þ 2n2 þ 3ð Þ

Qþ
n10;n20;n3

¼ 2n3 � 1

n3 2n2 þ 1ð Þ

� n2 þ 1ð Þ
h

� Qþ
n10;n2þ1;0;n3þ1þn2Q

þ
n10;n2�1;0;n3�1

i
� n3 � 1

n3
Qþ

n10;n2;0;n3�2

from which we can then apply

Qþ
n11;n20;n3

¼
Qþ

n10;n20;n3

2
n1 � n2ð Þ½ n1 þ n2 þ 1ð Þ þ n3 n3 þ 1ð Þ


Qþ
n10;n21;n3

¼
Qþ

n10;n20;n3

2
� n1 � n2ð Þ½ � n1 þ n2 þ 1ð Þ þ n3 n3 þ 1ð Þ


ðB8Þ

and then, finally, we can recursively compute

Qþ
n1m1;n2m2 ;n3

¼ n1 þ m1ð Þ n1 � m1 þ 1ð ÞQþ
n1m1�1;n2m2 ;n3

þ n2 þ m2ð Þ n2 � m2 þ 1ð ÞQþ
n1m1;n2m2�1;n3

Qþ
n1m1 ;n2m2þ1;n3

¼ n3 � m1 � m2ð Þ n3 þ m1ð þm2 þ 1ÞQþ
n1m1 ;n2m2 ;n3

� Qþ
n1m1þ1;n2m2;n3

Note that there are generally many possible pathways to
compute a specific coefficient. This is useful for self-
consistency testing when tabulating the results.
[85] Equivalently, it can be shown that equation (B5) can

be computed directly by

Qþ
n1m1 ;n2m2;n3

¼ 2

2n3 þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ m1ð Þ! n2 þ m2ð Þ! n3 þ m1 þ m2ð Þ!
n1 � m1ð Þ! n2 � m2ð Þ! n3 � m1 � m2ð Þ!

s
� n1;m1; n2;m2jn3;m1 þ m2h i n1; 0; n2; 0jn3; 0h i

ðB10Þ

where hn1, m1; n2, m2,jn3, m1 + m2i is a Clebsch-Gordan
coefficient, representing a unitary transformation between
coupled and uncoupled basis states in quantum angular
momentum theory. Clebsch-Gordan coefficients can be
calculated according to the Racah formula [Messiah, 1963]
and are tabulated and widely distributed in the particle
physics community [Particle Data Group, 2002], thus
making computer programs easier to verify.
[86] Now we must compute the integral over longitude.

This vanishes unless the triple product of cosine and sine
functions involves an odd number of cosines (understanding
that zero-order sine functions are disallowed). Therefore
�3 = F(�1, �2) is uniquely determined. For these nonzero
combinations, it can be shown that the longitude integral:

��1�2

m1m2
¼ 1

4p

Z2p
0

sinm1l
cosm1l

� ��1 sinm2l
cosm2l

� ��2

�
sin m1 þ m2ð Þl
cos m1 þ m2ð Þl

� �F �1;�2ð Þ

dl

¼ a �1;�2ð Þ
2 2� dm10ð Þ 2� dm20ð Þ

where

F �1;�2ð Þ ¼ C if �1 ¼ �2

S otherwise

�

a �1;�2ð Þ ¼ �1 if �1 ¼ �2 ¼ S

þ1 otherwise

� ðB12Þ

According to identity (B6), we use can use the following
selection rules in equation (B5) to compute all allowed

ðB7Þ

ðB11Þ

ðB9Þ
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values of the Q coefficients:

m1;m2;m3ð Þ ¼
m;m0;m00ð Þif m00 ¼ mþ m0

m00;m0;mð Þif m00 ¼ m� m0

m00;m;m0ð Þif m00 ¼ m0 � m

8<: ðB13Þ

and thus compute equation (B4) for any combination of
m00 = jm ± m0j. Using all the above tools, the ocean function
product-to-sum coefficients in equation (B1) can be
simplified using:X1
n00¼0

Xn00
m00¼0

XC;Sf g

�00

A
�;�0 ;�00

nm;n0m0;n00m00C
�00

n00m00

¼
Xnþn0

n00¼max n�n0j j;mþm0ð Þ
if nþn0þn00¼even

�2
nm�

��0

mm0Q
þ
nm;n0m0 ;n00C

F �;�0ð Þ
n00 ;mþm0

þ
Xnþn0

n00¼max n�n0j j; m�m0j jð Þ
if nþn0þn00¼even

�2
nm�

F �;�0ð Þ�0

m0;m�m0 Qþ
n00 ;m�m0;n0m0;nC

F �;�0ð Þ
n00 ;m�m0 if m � m0

�2
nm�

F �;�0ð Þ�
m0�m;m Qþ

n00 ;m0�m;nm;n0C
F �;�0ð Þ
n00;m0�m if m0 � m

8<:
9=;

ðB14Þ
[87] The numerators and denominators are pure integers

(as can be seen by inspection of the above formulae); so if
they are computed separately, the answer can be represented
as an exact rational fraction until the final step. At each step in
the recursion the numerator and denominator are divided by
their greatest common denominator, which can be important
to prevent computational problems. (Even doing so, the
number of digits required to represent the rational fraction
grows quickly, as large as 11 digits for degree-3 theory, and so
at some point floating-point calculations become necessary).
[88] Our recursive method was amenable to implementa-

tion in a spreadsheet, and the results (for low degree) are
shown in Appendix C. We successfully verified the answers
for low-degree expansions using published values of
Clebsch-Gordan coefficients and complex spherical harmon-
ics, which were then converted into results for real-valued
spherical harmonics. This was all done by painstaking hand
derivation so as to recover the rational fractions exactly in
terms of integer numerators and denominators. Finally, we
performed a second independent check by writing a FOR-
TRAN program to tabulate the results of equation (B14) by
applying the method of (B10) using a Clebsch-Gordan
subroutine. Since this program has been validated, due to
obvious advantages of speed and accurate bookkeeping, it
will be employed for future higher-degree calculations.

Appendix C: Product-to-Sum Conversion:
Results for Low Degrees

[89] We provide sample results of equations (52) and (B1)
here as a benchmark to assist those attempting to apply our
method. Consider the smooth sea level function ~S(�) that is
defined globally as a spherical harmonic expansion, but is
then projected onto the area covered by the ocean such that
the result is exactly ~S(�) on the ocean, but zero on land. The
spherical harmonic coefficients of the ocean-projected func-
tion are given by

C �ð ÞeS �ð Þ
h i�

nm
¼
X
n0m0�0

X
n00m00�00

"
A
�;�0;�00

nm;n0m0;n00m00C
�00

n00m00

#eS�0

n0m0 ðC1Þ

Consider that ~S(�) is given exactly as a degree-2 spherical
harmonic expansion. Note that in this case, only ocean

function coefficients up to degree 4 are required for exact
results. Results are now systematically provided for the
projected function up to degree 2 using the method of
Appendix B.
[90] Starting with degree 0 of the projected function we

have

C �ð ÞeS �ð Þ
h iC

00
¼ CC

00
eSC00 þ 1

3
CC
10
eSC10 þ 1

3
CC
11
eSC11 þ 1

3
CS
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5
CC
20
eSC20 þ 3

5
CC
21
eSC21 þ 3

5
CS
21
eSS21 þ 12

5
CC
22
eSC22
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5
CS
22
eSS22 ðC2Þ

For degree 1 we have

C �ð ÞeS �ð Þ
h iC
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Finally, for degree 2 we have
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h iC
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Figure 2. Monthly snapshots of mass distribution on land and in the oceans derived from observed
degree-1 deformation: (left) (top to bottom) 1 January through 1 June, and (right) 1 July through 1
December. Different scales are used for land and ocean distributions, as there is a factor of 10 more load
variation on land than in the oceans.
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