
Short Course

Plug and Play GPS for Earth Scientists:

Providing Immediate Access to Low-Latency Geodetic Products for Rapid Modeling and Analysis of Natural Hazards

Plug and Play Portal and Short Course Materials

ftp://gneiss.nbmg.unr.edu/PlugNPlay/ShortCourseAfricaArrayJan2016

Includes:

- Short Course Agenda
- •1 Pager handout with description and link to signup form
- Short Course slides (.pdf of this presentation)

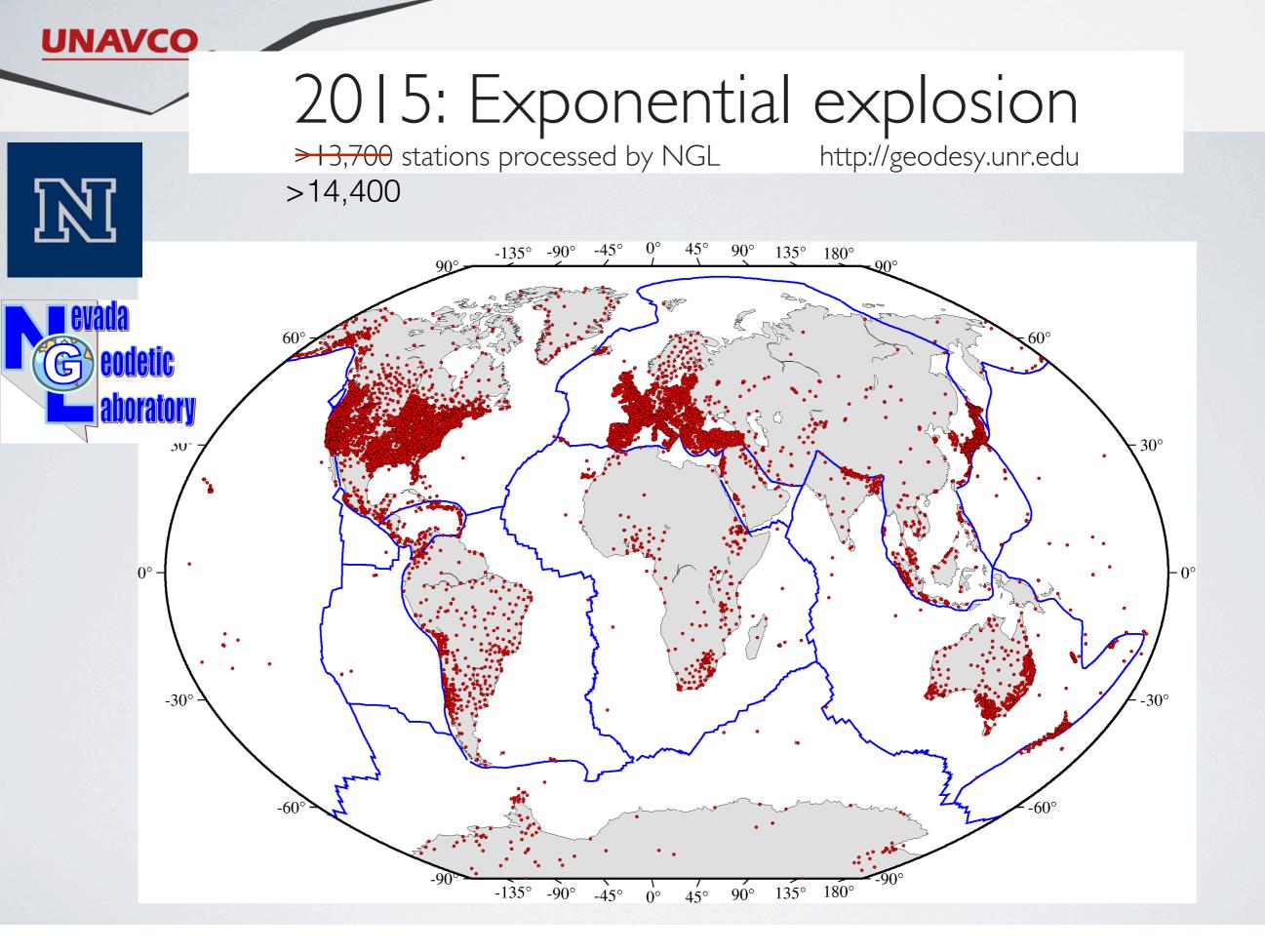
https://www.unavco.org/projects/other-projects/plug-and-play-gps/plugand-play-gps.html

Plug and Play: Introduction of Scope and Philosophy

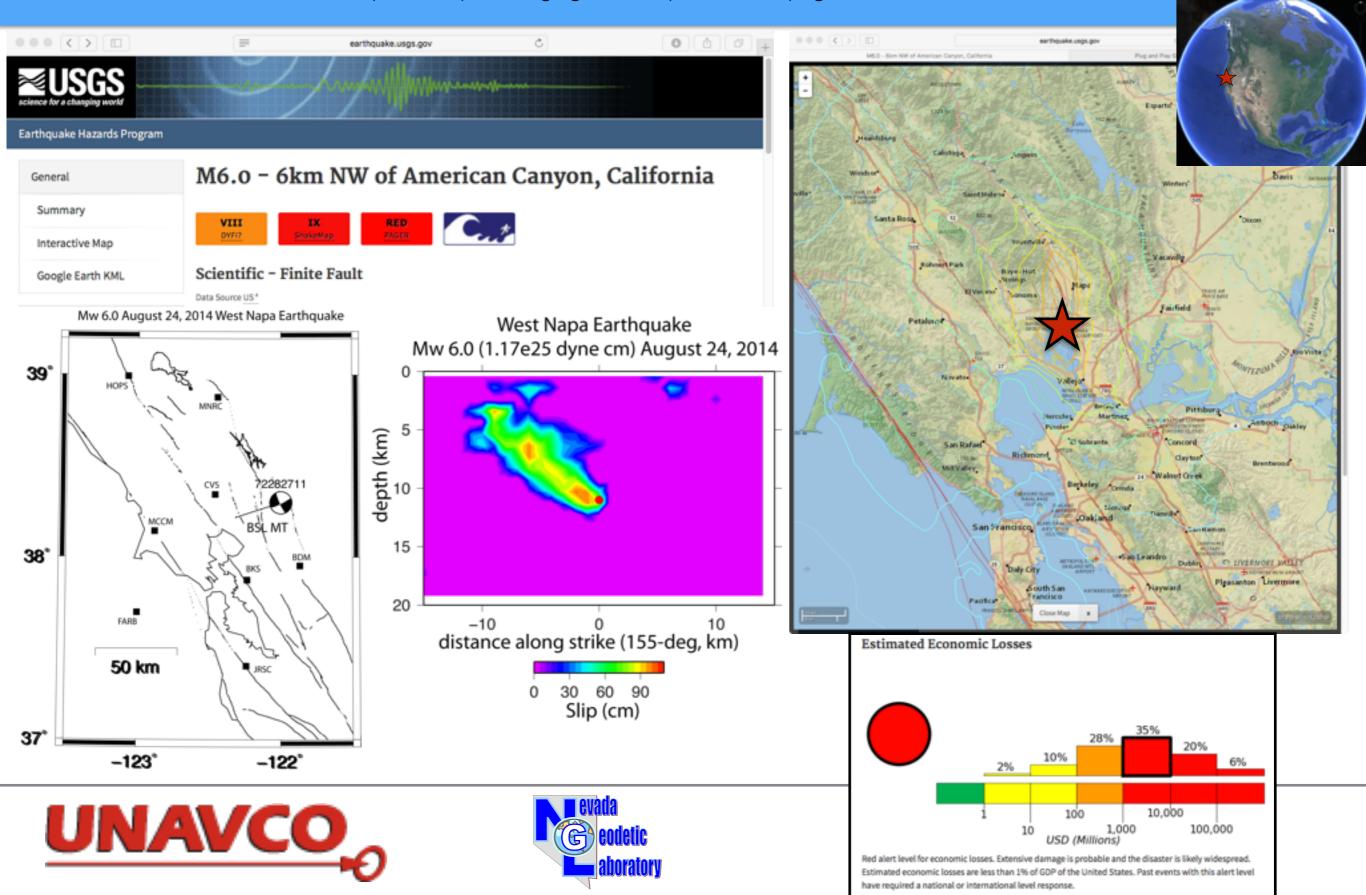
• Why are we doing this?

- Provide FREE GPS data processing service that minimizes effort on part of network operators who contribute data
- Reduces barriers to maximize scientific impact of GPS networks
- Promotes of data sharing for science and society
- Maximize discovery of data for scientific applications

Who is involved? The PnP Team players:


- UNAVCO, UNR
- plus beta testers and unfunded collaborators, e.g. USGS, JPL, ...
 i.e. you!

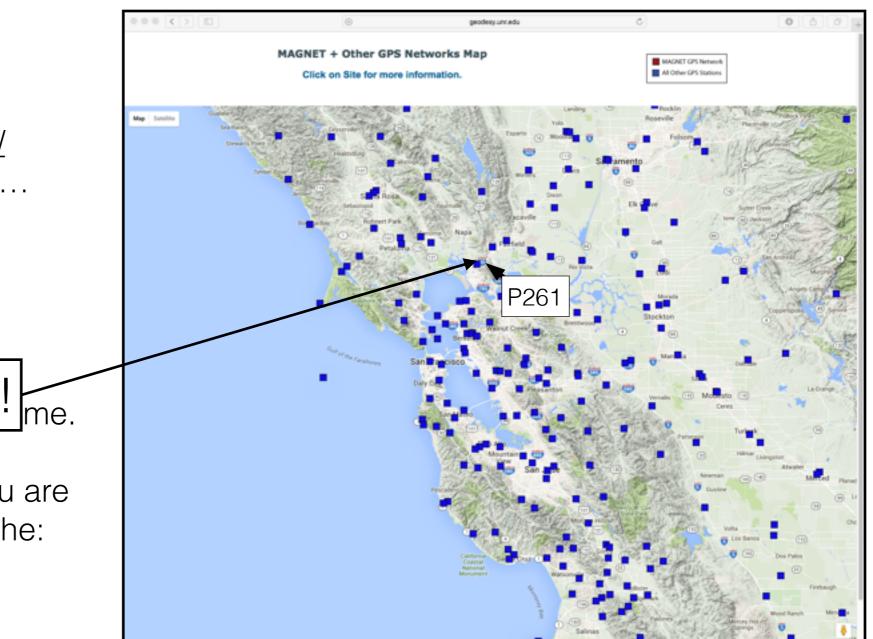
Who is funding the project?


- Collaborative NASA ACCESS program project UNAVCO and UNR
- History of scientific, processing, and data products development at these institutions.

• What is the arrangement?

- Network operators contribute data to UNAVCO or UNR directly
- UNR picks up data, processes with GIPSY and generates data products (e.g. time series results files, plots, maps, velocity fields, quality control products, etc.)
- Data products are placed on open access data products services, e.g. web pages, GSAC services.
- Open access.
 - Reduces barriers to setting up or expanding networks.
- This is a rollout
 - Many of the individual 'services' have been available for some time in the form of research projects.
 - Much of this is in beta mode... feedback is welcome.
 - New products available

http://earthquake.usgs.gov/earthquakes/eventpage/nc72282711


Imagine this happens And you want GPS solutions.

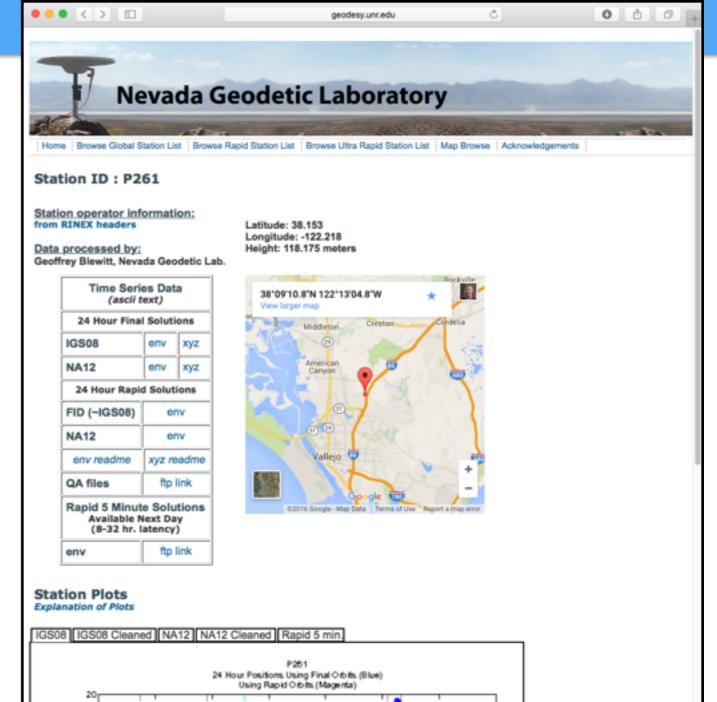
You go to <u>http://geodesy.unr.edu/</u> You see there are many stations ...

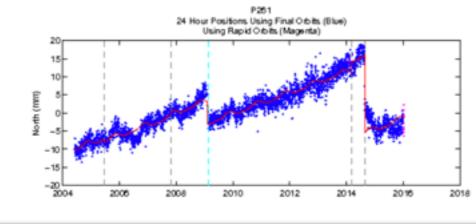
You might want an example time series. You might want to grab a couple plots.

Hover you mouse to get Click! me.

- Data Holdings files...
- GSAC search tools...

Imagine this happens


And you want GPS solutions.


You go to http://geodesy.unr.edu/ You see there are many stations ...

If you want an example time series you might want to grab a couple plots.

Hover you mouse to get station name.

- Data Holdings files...
- GSAC search tools

Imagine this happens And you want GPS solutions.

You go to <u>http://geodesy.unr.edu/</u> You see there are many stations ...

If you want an example time series you might want to grab a couple plots.

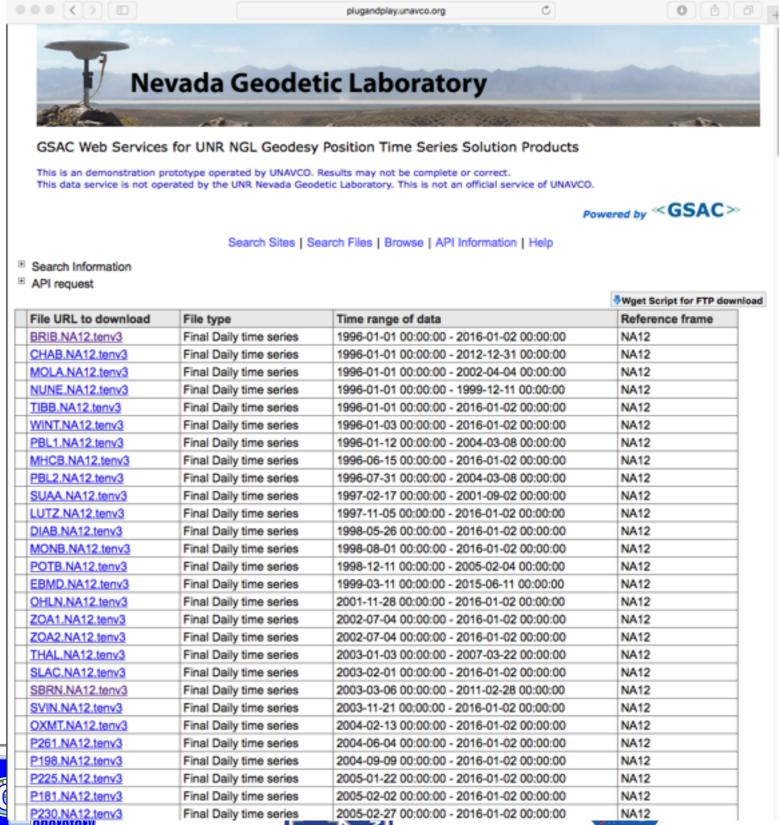
Hover you mouse to get station name.

- Data Holdings files...
- GSAC search tools

_		0 <>			10 m		geodesy.unr.edu		Ċ			0 6 7	+
-	Sta	Lat(deg)	Long(deg)	Eqt(m)	X(m)	Y(m)	I(n)	Dtbeg	Dtend	Dtmod	NumSol	StaOrigName	
1000	1830	31.7508	266.9024	28.071	-293349.5323	-5420742.3561	3336980.8353	2013-03-31	2015-12-21	2015-12-21	909		·
ser a	1ULM ABO6	32.5290	267.9241 196.5765	16.000 500.412	-194982.0141	-5379221.9515 -1049128.1698					913 253		1000
200	ABMP	16.2623			2919785.7182						340		
and the	A320 A3Q5	-19.0183 34.9574			4097216.6713 -1486206.9395						863 868		1000
Home	A8Q6	34.9571	253.5055	1720.651	-1486213.0785	-5019145.7921	3634956.0771	2013-03-31	2015-12-21	2015-12-21	841		1.50
	AC06 AC10	59.7636 54.5226			-2813463.6625 -3581775.4879						935		_
Current	AC27	59.2525			-2942366.1195						931		
Great Bas	AC44 AC59	61.2422 59.5672	210.4329 206.4148		-2652975.1418 -2900773.1286						943 905		
Basin and		43.3644	351.6011	66.916		-678367.8806					944		
Aquifer D	ACU6	41.7433	289.1134	5.021		-4503296.2530					866		18
Geotherm	ADIS ADKS	9.0351 29.7910	38.7663	2439.166 2.831		3945922.6424 -5513496.8493	995383.2832 3150287.2103				780		
Global Te	ADRI	41.9190	275.9757	205.960	494838.1799	-4727340.1260	4239050.3234	2013-03-31	2015-12-21	2015-12-21	900		
Reference	ACEN	43.3127 44.1725	3.4743	68.239	4639701.7515 4581960.1860		4352886.9427 4421939.9182				900 906		
Global St		-38.4114	178.0460		-5001713.8688		-3941681.7507				924		
Yucca Mo	AICI	43.3336 47.8770	358.9856 3.3559	121.401 186.791	4645961.3276 4278646.1148		4354613.6291				904 923		
Publicatio	AIRS	16.7408	297.7861		2848125.5623						538		
Publicabo		-40.5398	176.4612		-4845036.3645		-4124001.4599				571		
	ALAC ALBA	38.3389 38.9779	359.5188 358.1436	60.332	5009051.1878 4962848.0483		3935057.7358 3990884.4508				947 947		
MAGNET	ALBH	48.3898	236.5125	31.768	-2341332.9341	-3539049.5241	4745791.3564	2013-03-06	2015-12-21	2015-12-21	943		
Network I	ALBY ALGO	-34.9502 45.9558	117.8102 281.9286	36.637 200.897	-2441714.4885	4629128.4957 -4346071.2523					842 937		
		-23.6701	133.8855		-4052052.2412						851		
People	ALME AMB2	36.8525			5105220.0839						949 919		
Geoff Ble		45.5406 38.8031			4465758.6670 -1248596.1223		4530070.4313 3976505.9986				919		
Hans-Pet	AXING	49.0500	2.2384		4116794.2688		4852750.3078				903		
Bill Hamn		-38.2682 45.2403	178.2912 4.6817		-5011995.6454 4483964.8412		-3929003.1700 4506508.0413				921 930		
Comé Kre	ASC2	61.1752	210.0166	57.847	-2669568.0785	-1542304.6878	5564833.2817	2013-03-31	2015-12-21	2015-12-21	891		/e
Elliot Kleir		-30.4533 29.3016	137.1601 264.5151	-9.193	-4035145.4404	3741808.3966 -5541057.6820					866 873		-
Bret Pecc	ANCE	47.4719	359.4522	106.085			4677465.3443				911		
Jayne Bo	ANKR	39.8874			4121948.5432	2652187.9132 -4827706.9105					884)
Jay Goldf	1325	39.0103 39.0105	283.3908 283.3909	20.425 21.630		-4827688.8935					859		
	NOUI	42.3682	13.3502	713.126	4592507.6895	1089876.2844	4276392.9656	2013-03-30	2015-12-21	2015-12-21	953		ages.
Yang Zha	ARAN	45.7152 35.7099	5.4247 268.3715	289.198 91.978		421757.2443	4543411.7302 3702154.3785				895 876		
Opportu	AREQ	-16.4655	288.5072	2488.945	1942826.7760	-5804070.2662	-1796893.9282	2013-03-06	2015-12-21	2015-12-21	902		Jata
Students	AREV	-16.4655 36.1158	288.5072 265.8200	2488.914 349.603		-5804070.3314 -5144995.6604					733		
Postdocs	ARGI	61.9974	353.2165	110.251		-354651.5492					943		itude,
	ABHP	33.6961	266.3994	84.484		-5301621.2679					874		
	ARIR	36.1842 34.6726	266.9698 267.6174		-218301.6716	-5147017.5566 -5246693.4162					837 878		
	ARM3	36.3692	267.6269	227.718	-212916.3827	-5137582.7511	3761395.8751	2013-03-31	2015-12-21	2015-12-21	878		ncy.
	ARNA	47.9465			o, 1389) 2861 286					3015-12-21	901 Station	with 24 sample rate	solutions
	Schubert, 307-333, Elsevier, doi:10.1016/B978-0-444-53802-4.00060-9. (PDF)									Stations with 24 sample rate solutions, rapid orbits, 24 hour latency.			

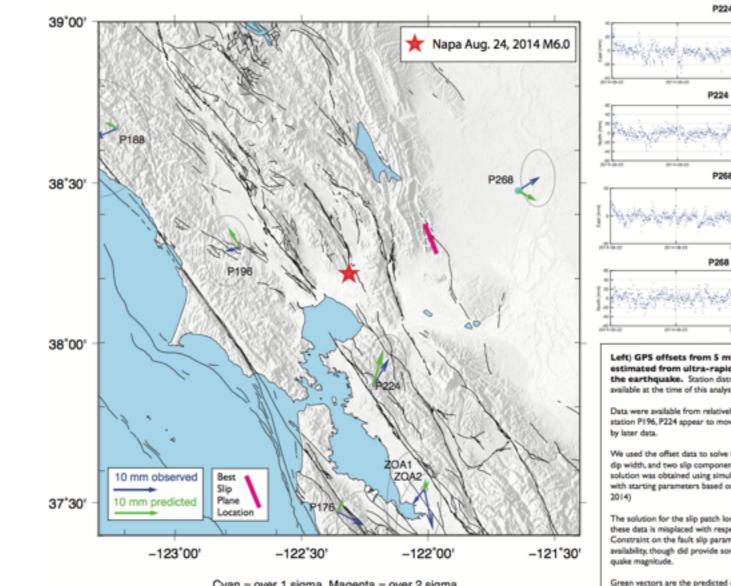
- Blewitt, 2015, Terrestrial reference frame requirements for studies of geodynamics and climate change, International Association of Geodesy Symposia, 1-8, doi:10.1007/1345_2015_142. (PDF)
 - ird, P., and C. Kreemer, 2015. Revised tectonic forecast of global shallow seismicity ased on version 2.1 of the Global Strain Rate Map. Bulletin of the Seismological Society

Imagine this happens And you want GPS solutions.


You go to http://geodesy.unr.edu/ You see there are many stations ...

If you want an example time series you might want to grab a couple plots.

Hover you mouse to get station name.


- Data Holdings files...
- GSAC search tools

Two Hours After Event: Ultrarapid Orbits

- Not "real time" i.e. 1 Hz with 1 s latency
- From Hourly RINEX
- Not all stations providing hourly
- Working on that
- Offsets detected
- But uncertainties are large
- Inferred source poorly constrained

Earthquake Displacements from 5 Minute Sample Rate Time Series

Cyan = over 1 sigma, Magenta = over 2 sigma

Left) GPS offsets from 5 minute sample rate time series estimated from ultra-rapid orbits roughly two hours after the earthquake. Station distribution reflects data that were actually available at the time of this analysis.

Data were available from relatively few stations, though offsets from station P196, P224 appear to move roughly in the direction substatiated by later data.

We used the offset data to solve for latitude, longitude, length, dip, downdip width, and two slip components on a single rectangular patch. The solution was obtained using simulated annealing (Kirkpatrick et al., 1983) with starting parameters based on the reported seismic solution (USGS, 2014)

The solution for the slip patch location (magenta line segment) based on these data is misplaced with respect to the epicenter by almost 20 km. Constraint on the fault slip paramters was poor because of poor data availability, though did provide some information about the limit of earthquake magnitude.

Green vectors are the predicted displacements from the best model that was derived later (not in real time) from the GPS offsets. Uncertainties (1-sigma shown) are estimated from the scatter of the time series before and after the event.

from Hammond et al., 2014 Fall AGU poster

Next Day After Event: Rapid Orbits

- Many more stations contributing
- Time series better behaved
- Offsets show clear strike-slip character
- Significant offsets as far as e.g. south Bay Area
- Source location, style, slip better constrained
- Extent of significant displacement from earthquake more clear

39*00 ★ Napa Aug. 24, 2014 M6.0 P18 P27 38°30' DIXN P268 P274 38'00' PTRE P257 10 mm observed Best Slip Plane 37°30' 10 mm predicted Location -123°00' -122°00' -121°30' -122°30

Cyan = over 1 sigma, Magenta = over 2 sigma

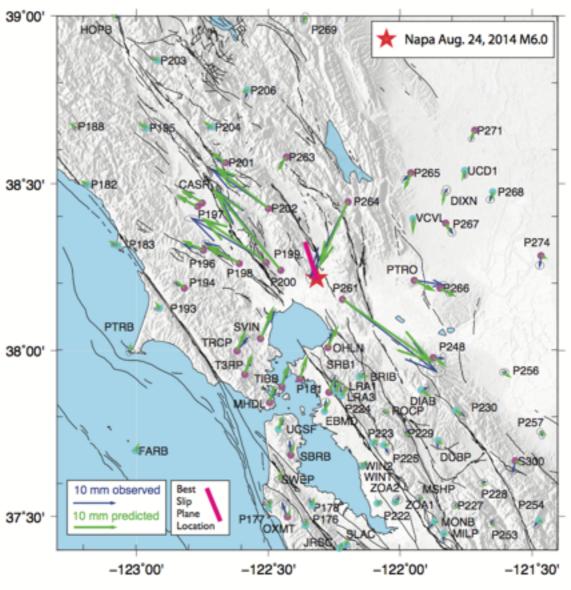
P261 - EAST

Left) GPS offsets from 5 minute sample rate time series estimated from 24 hour latency rapid solutions the day after the earthquake. Station distribution reflects data that were available at the time of this analysis (the day after the event).

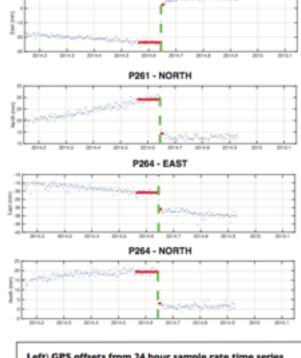
Data were available from many more stations compared to the ultra-rapid solutions, providing a far better constraint on the earthquake source. The slip patch (majenta bar) is displaced northwest of the epicenter, similar to observations of surface rupture and aftershocks, and the moment centroid. (USGS, 2014) The estimated strike is aligned well with the west Napa Fault.

Green vectors are the predicted displacements from the best fitting model that was derived later (not in real time) from the GPS offsets. Uncertainties (1-sigma shown) are estimated from the scatter of the time series before and after the event.

from Hammond et al., 2014 Fall AGU poster


Earthquake Displacements from

5 Minute Sample Rate Time Series



1 Full GPS Day Later: Rapid orbits

- Time series greatly improved, reduced scatter from 24 hour sample rate solutions
- Offsets better constrained
- Dramatically smaller uncertainties
- Inferred source right on top of seismic epicenter

P261 - EAST

Left) GPS offsets from 24 hour sample rate time series estimated from rapid orbits. These results were available after one full GPS day transpired after the earthquake. The offset is the difference betwen position during the first full day after the event and the mean of 30 days prior to the event. Station distribution reflects data that were actually available at the time of this analysis.

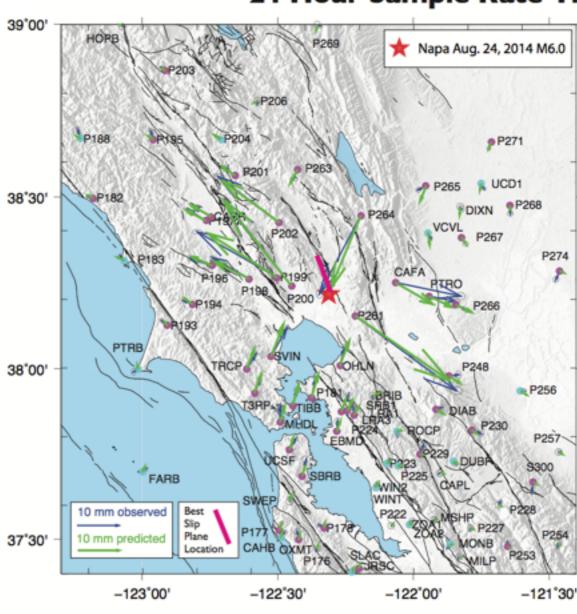
Compared to the 5 minute sample rate time series, a greater number of GPS stations have provided data and the uncertainties in the displacements are far smaller.

The maximum displacements (29 mm) were at station P261. Marin County moved between 4 and 10 mm northeast.

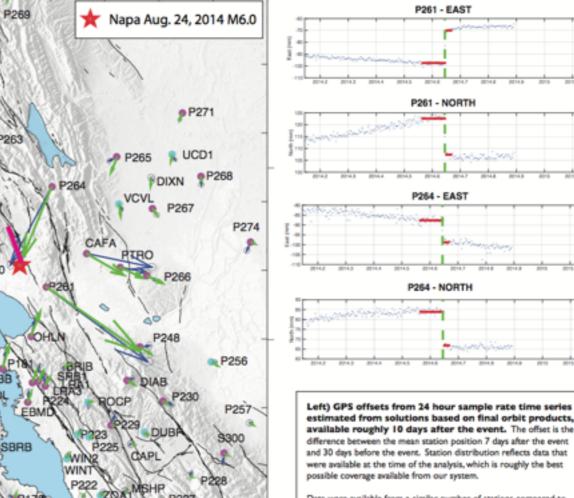
The model slip patch is located in a similar location compared to the rapid 5 minute solutions, \sim 5 km northwest of the epicenter. This slip patch is in a similar location to the seismogeodetic solution of Melgar et al., 2014 (see their poster in this session).

Green vectors are the predicted displacements from the best fitting model that was derived later (not in real time) from the GPS offsets. Uncertainties (1-sigma shown) are estimated from the scatter of the time series before and after the event.

from Hammond et al., 2014 Fall AGU poster


Earthquake Displacements from

24 Hour Sample Rate Time Series


10 Days After Event: Final Orbits

- Moderate improvement over rapids
- Shows stability in solution of source
- Similarity to seismic slip inversions
- Used to benchmark real-time source inversion studies, e.g. Melgar et al., 2015 JGR plus other groups used our rapidoffsets

Cyan = over 1 sigma, Magenta = over 2 sigma

Earthquake Displacements from 24 Hour Sample Rate Time Series

Data were available from a similar number of stations compared to the rapid solutions (above), though uncertainties are a little smaller owing to the additionally averaging of data after the event.

The slip patch location (majenta bar) has barely changed given the new data.

Green vectors are the predicted displacements from the best fitting model that was derived later (not in real time) from the GPS offsets. Uncertainties (I-sigma shown) are estimated from the scatter of the time series before and after the event.

from Hammond et al., 2014 Fall AGU poster

P261 - EAST 39"00' P269 🚖 Napa Aug. 24, 2014 M6.0 2014.4 2014.5 2014.8 2014.7 2014.8 2014.9 2014.2 P271 Time (years) P261 - NORTH UCD1 P182 DIXN P268 P267 VCVL P274 2014.4 2014.5 2014.6 2014.7 2014.8 2014.9 P183 PTRO Time (years) P264 - EAST P266 PTRB / P193 38'00' P256 2014.5 2014.6 P257 ime (years P264 - NORTH 10 mm coseismic Slip Plane 37*30' Locatio 2014.1 2014.2 2014.3 2014.4 2014.5 2014.6 2014.7 2014.8 2014.9 Time (years)

-122°00'

Postseismic Displacements from 24 Hour Sample Rate Time Series

Months After Event: **Final Orbits**

- · Time series modeled with slope, intercept, annual+semiannual terms, step, exponential decay 38'30' after event
- Clear postseismic afterslip found
- · Seen in GPS data and in situ surface observations
- Lasted weeks
- Coseismic M_W=6.07 versus postseismic M_w=5.75
- Clear implications for seismic hazard studies

from Hammond et al., 2014 Fall AGU poster

-122*30'

-123°00'

-121*30'

Products Coming Soon

- More reference frames for existing products: e.g. tectonic plate based frames for Africa/Arabia, South America, Eurasia, Pacific, Australia/Oceana, Antarctica
- Median spatial filtered velocities
- Uplift Maps based on GPS imaging (flat maps and .kml)
- Better time series plotting tools
- Strain rate maps
- Earthquake offset pages, delivered with lowest possible latencies

AfricaArray workshop - January 20, 2016 - University of the Witwatersrand - Johannesburg, South Africa

Plug and Play: Future Plug n Play Events

- May 2014, NASA Awards Project
- 2015 presentation of service and available data products at workshops, conferences e.g. EarthScope, Fall AGU in San Francisco.
- AfricaArray, January 18-20, 2016
 - Rollout
 - New data products
 - First short course
- UNAVCO Science workshop, Boulder, CO March 28-31
 - Plug and Play highlighted in science sessions
- Less-Short course in Boulder, May 27, 2016
 - Full day workshop at UNAVCO facility
 - More extensive explanation of available tools, data resources
 - More information available soon at http://unavco.org